91ÊÓÆµ¹ÙÍø

What Is Hyper Converge Infrastructure?
Knowledge

What Is Hyper Converge Infrastructure?

The IT room is an indispensable data management center for all companies. It deos not only keep customer information and transaction records, but also provide application systems for employees to perform operations and maintain operations. It also keep important confidential company information. 91ÊÓÆµ¹ÙÍøever, building a traditional IT computer room requires a lot of costs and spaces. Because technological breakthroughs and hyper converged architecture technology can help companies to simplify management processes and reduce construction and maintenance costs, it has become the mainstream IT architecture in the future.
Published: Jul 21, 2021
What Is Hyper Converge Infrastructure?

What Is Hyper Converged Infrastructure?

Hyper converged infrastructure (HCI) is a software-defined, unified system that combines all the elements of a traditional data center: storage, compute, networking and management.

"Hyper converged infrastructure" is an IT term that combines the words of "hyper converged" and "infrastructure". Among them, "infrastructure" refers to the provision of computing, storage, network connection, and other infrastructure services for the IT environment. "Hyper convergence" is formed by adding hyper to converged infrastructure, which means that it can provide further integration to converged architecture.

Hyper converge infrastructure integrates computing, virtualization, storage, and networking into a single cluster. Starting from at least three nodes, users can easily expand the scale according to computing and storage resource requirements. Hyper convergence provides cloud-like simplicity in a single platform that can be deployed on-premises and easily managed. The distributed storage of the X86 server is adopted, and the distributed storage and computing virtualization are deployed in the same server hardware, replacing the complex and expensive traditional infrastructure. Enterprises use a hyper converged architecture to expand the number of nodes in the server, and run software in different nodes, and operate all maintenance functions in a unified manner, with excellent performance and flexibility.

The components of the hyper converged architecture:
  • Storage virtualization
  • Computing virtualization
  • Network virtualization
  • Advanced automated management functions

The virtualization software abstracts the underlying resources, creates a pool, and then dynamically allocates the resources to the application running in the virtual machine or container. It is based on the principle of conforming to the application, so no logic unit is required. Complex structures such as numbering and magnetic zones simplify management.

Key technologies of hyper converged architecture:
  • Distributed storage architecture
    Through data cutting, the huge amount of information is scattered and stored in multiple independent devices on the network. These are placed on the X86 server, and a set of convenient expansion kits is constructed, giving a very stable storage resource pool.
  • Solid State Drive SSD
    SSD uses flash memory to store data, speed up the transmission speed, and greatly improve computer performance. SSD has the advantages of being lightweight, low energy consumption, quiet, and shock resistance. The random performance of SSD makes it able to operate at speeds as high as two orders of magnitude higher that other storage devices. Therefore, unlike the traditional three-tier architecture, additional rack space is required for the storage system, so that storage and computing nodes are integrated and easier to manage.
  • Virtualization applications
    Another key technology to realize hyper-converged architecture technology is virtualization. With virtualization technology, distributed storage or storage virtualization solutions can be effectively used to truly utilize the physical hardware that integrates storage and computing on the x86 Server coexistence.
  • Central Processing Unit CPU
    With the development of the CPU, with its higher performance and lower the manufacturing cost, sufficient performance can solve computing and storage requirements at the same time.
Advantages of hyper converged architecture:

The management is simple and convenient, hardware cost and space occupied are reduced.? Flexible expansion capabilities, suitable for developing small and medium-sized enterprises, depending on business needs, expand the system scale potentials.

  • IT efficiency is higher and management is convenient
    The hyper converged architecture can eliminate manual processes making it no longer necessary to rely on dedicated personnel in the IT team for independent management. By adopting a converged IT team, resources can be monitored and managed at the same time. Storage functions can be improved, and IT resources can be dynamically configured in the form of a storage pool, providing the capacity, performance, and protection required by the system.
  • Reduce costs, reduce hardware space, and store more data
    Use the X86 server, the hyper converged architecture can be expanded vertically or horizontally. There is no need to set up a dedicated network, so capital expenditures are reduced. Capacity can be directly increased without the need to increase the hardware configuration, and the system will not be interrupted. With the hyper converged architecture, companies can build data centers of the appropriate scale based on their own needs, avoiding unnecessary system expenditures.
  • Strong expansion capability, suitable for small and medium enterprises
    The hyper converged architecture can quickly respond to business needs. The hardware configuration can be completed in just a few hours, and it can be put into operation within a few minutes to create workloads and improve the performance of key business applications such as relational databases.
  • Simple maintenance
    Due to the high fault tolerance of the hyper converged architecture, the low risk of data loss, and the short impact on the business, coupled with the advantages of a fast recovery and high degree of automation, system maintenance is simpler than traditional architecture.
Features of hyper converged architecture:
  • Uses general-purpose server hardware to form the basic unit
    Uses standard commercially available server hardware to form a basic unit that integrates computing and storage units.
  • Uses hardware resources in a software-defined way
    Uses virtual machine (VM) as the core and software-defined type to use hardware resources. Resource deployment does not involve the adjustment of the configuration settings of the underlying physical hardware. The underlying hardware resources are planned and used purely in a software-defined manner, and then deliver the required resources to the end-user.
  • Clustered architecture
    Through clustering or distributed storage software, multiple basic unit chassis are combined to form a cluster. This cluster provides the necessary hardware, service, and data availability to allow scalability of the IT environment.
  • Easy to deploy quickly
    The product has completed the software and hardware installation test in advance, and the user only needs to set the basic environmental parameters to start using it.

91ÊÓÆµ¹ÙÍø to use hyper converged architecture?

The use of a hyper converged architecture requires the use of the cloud. There are 3 steps from internal to external to integrate private cloud, public cloud, and hybrid cloud applications:

  • Build a private cloud:
    Building a cloud infrastructure in the internal deployment environment can not only reduce costs, but also allow for more control, and increase the flexibility and agility of enterprises to deploy new applications, and indirectly improve security.
  • Connect to the public cloud:
    Choose to connect the public cloud provided by hyper converged architecture vendors to speed up deployment and reduce infrastructure management time.
  • Adopt hybrid cloud:
    Use the hybrid cloud to manage various virtual machines and container applications in data centers, public clouds, and edge environments.
What challenges can hyper convergence overcome?

Digital transformation is the key to business success. The accompanying requirements include support for huge amounts of data, artificial intelligence (AI), and hybrid cloud while meeting the rapidly increasing demand of traditional workloads. Under the current IT infrastructure, the data center will be inefficient, due to dull permutations and combinations that are difficult to manage. Current data centers cannot meet the rapid improvement needs of enterprises and the cloud. HCI centralizes resources and management, which not only reduces costs and complexity but also reduces the burden on employees while improving efficiency.

Published by Jul 21, 2021 Source :, Source :

Further reading

You might also be interested in ...

Headline
Knowledge
The Birth of a Fabric: The Science and Craft of Textiles
Although fabric may seem like an ordinary item in our daily lives, its creation involves complex and highly precise processes. From cotton grown in the fields to synthetic fibers produced in factories, each raw material carries unique properties and purposes. Whether it¡¯s the light, airy touch of a shirt or the high protective performance of medical textiles, behind it lies a production chain that spans agriculture, chemistry, and engineering.
Headline
Knowledge
Exploring Major Types of Plastics and Their Properties
Plastic materials are indispensable raw materials in modern manufacturing. Based on their chemical structures and processing characteristics, plastics are mainly classified into two categories: thermoplastics and thermosets. Understanding the properties of these two types aids in material selection and product design, thereby enhancing manufacturing efficiency and product performance.
Headline
Knowledge
Analysis of Green Plastic Manufacturing
With the rise of environmental awareness and the global push for sustainable development goals, traditional plastics face increasing environmental pressure due to their challenges in decomposition and recycling. In response, the manufacturing industry is actively developing and applying eco-friendly plastic materials to build green manufacturing systems. This article explores the types, characteristics, and industrial applications of eco-friendly plastics to assist industry transformation and upgrading.
Headline
Knowledge
Key Parameters for Manufacturing High-Quality Plastic Products
Plastic materials are widely used across various industries due to their lightweight, ease of molding, and versatile properties. 91ÊÓÆµ¹ÙÍøever, different types of plastics exhibit distinct mechanical, thermal, chemical, and dimensional stability characteristics, which directly affect the final product¡¯s performance and service life. Therefore, understanding the performance indicators of plastics is fundamental to designing and manufacturing high-quality plastic products.
Headline
Knowledge
Dry Cutting vs. Wet Cutting: The Balance of Energy Saving, Cost, and Quality
In CNC machining, the choice of cooling method is not simply a technical preference but a multi-faceted trade-off involving cost control, machining quality, tool life, and production line stability. Both dry cutting and wet cutting have their advantages and limitations. To stand out in the fiercely competitive market, companies must shift from pursuing the ¡°theoretically optimal¡± to the ¡°contextually optimal¡± solution.
Headline
Knowledge
The Unsung Heroes of Cutting Tool Coatings: Performance Differences from TiN to DLC
In CNC machining, cutting tool coatings are a critical yet ¡°invisible¡± factor in boosting production efficiency and reducing costs. Although coating thickness is only a few microns, it significantly enhances tool hardness and wear resistance, optimizes heat dissipation, and improves cutting speed and machining accuracy. From classic Titanium Nitride (TiN) to advanced Diamond-Like Carbon (DLC) coatings, different coating materials not only offer varying hardness and heat resistance but also affect tool lifespan and machining adaptability.
Headline
Knowledge
Comprehensive Overview of Plastic Processing Methods: Mastering Key Technologies and Applications
Plastic products play an indispensable role in modern manufacturing, and various plastic processing techniques are crucial for achieving product diversity and efficient production. The following introduces five common and important plastic processing methods, helping readers gain a thorough understanding of their principles, features, and application scopes.
Headline
Knowledge
Fabric Knowledge Base: A Guide to Fiber Applications, From Beginner to Expert Selection
Textile fiber is the fundamental element that determines fabric performance and product suitability. Whether you are a designer, manufacturer, or consumer, understanding the unique characteristics of different fibers and their suitable applications is crucial for precise material selection and informed purchasing. This article will systematically introduce the applications of major natural and synthetic fibers and explain how blending them can overcome the limitations of single fibers, providing versatile functional solutions and helping you build a comprehensive knowledge base of textile applications.
Headline
Knowledge
What is Liquid Injection Molding?
Liquid Injection Molding (LIM) is a manufacturing process that involves injecting liquid silicone rubber (LSR) into precision molds, followed by heating and curing to form high-precision, complex plastic components. Compared to traditional thermoplastic injection molding, LIM offers superior accuracy and the capability to produce more intricate shapes, making it especially suitable for applications demanding high performance and reliability.
Headline
Knowledge
Precision Mold Development and Manufacturing: The Core Technology of Modern Plastic Production
Precision molds form the foundation for the quality and efficiency of plastic part molding. In today¡¯s highly competitive manufacturing environment, the design and fabrication of molds directly impact a product¡¯s functional performance and market competitiveness. Excellent mold development requires not only precise engineering design but also the integration of advanced machining technologies and rigorous quality control to achieve efficient and stable mass production.
Headline
Knowledge
The Magical Journey of Milk Tea
Pouring smooth, rich milk into robust black tea with a unique aroma, then stirring it all together, gets you a cup of milk tea. But do you really know what defines milk tea, and how it differs from the milk tea we enjoy today?
Headline
Knowledge
The Connection Between Textiles and Biomimicry: A Fabric Revolution Inspired by Nature
Lotus leaves after rain shed water droplets without a trace; delicate spider silk is stronger than steel. These are not coincidences but exquisite designs evolved by nature over millions of years. The textile industry is learning from this great designer¡ªnature itself¡ªthrough biomimicry, transforming natural wisdom into fabrics that perform better and are more eco-friendly.
Agree