91ÊÓÆµ¹ÙÍø

91ÊÓÆµ¹ÙÍø do Convolutional Neural Networks Work?
Trend

91ÊÓÆµ¹ÙÍø do Convolutional Neural Networks Work?

Breakthroughs in deep learning in recent years have come from the development of Convolutional Neural Networks (CNNs or ConvNets). It is the main force in the development of the deep neural network field, and it can even be more accurate than humans in image recognition.
Published: Oct 06, 2022
91ÊÓÆµ¹ÙÍø do Convolutional Neural Networks Work?

What is a Convolutional Neural Network?

Convolutional Neural Network is a feed-forward neural network whose artificial neurons can respond to surrounding units within a partial coverage area and has excellent performance for large-scale image processing. A convolutional neural network consists of one or more convolutional layers and a top fully connected layer, as well as associated weights and pooling layers. This structure enables convolutional neural networks to exploit the two-dimensional structure of the input data. Compared to other deep learning architectures, convolutional neural networks can give better results in image and speech recognition. This model can also be trained using the backpropagation algorithm. Compared to other deep, feed-forward neural networks, convolutional neural networks have fewer parameters to consider, making them an attractive deep learning architecture.

The Convolutional Neural Network is powerful in image recognition, and many image recognition models are also extended based on the CNN architecture. It is also worth mentioning that the CNN model is a deep learning model established by referring to the visual organization of the human brain. Learning CNN will help me learn other deep learning models.

Feature:

CNN compares parts of the image, which are called features. By comparing rough features at similar locations, CNNs are better at distinguishing whether images are the same or not, rather than comparing whole images. Each feature in an image is like a smaller image, that is, a smaller two-dimensional matrix and these features capture common elements in the image.

Convolution:

Whenever a CNN resolves a new image, without knowing where the above features are, the CNN compares anywhere in the image. To calculate how many matching features are in the whole image, we create a filtering mechanism here. The mathematical principle behind this mechanism is called convolution, which is where the name CNN comes from.

The basic principle of convolution is to calculate the degree of conformity between the feature and the image part, if the value of each pixel of the two is multiplied, and then the sum is divided by the number of pixels. If every pixel of the two images matches, sum these products and divide by the number of pixels to get 1. Conversely, if the two pixels are completely different, you will get -1. By repeating the above process and summarizing various possible features in the image, convolution can be completed. Based on the values and positions of each convolution, make a new 2D matrix. This is the original image filtered by the feature, which can tell us where to find the feature in the original image. The part with a value closer to 1 is more consistent with the feature, the closer the value is to -1, the greater the difference; as for the part with a value close to 0, there is almost no similarity at all. The next step is to apply the same method to different features, and convolutions in various parts of the image. Finally, we will get a set of filtered original images, each of which corresponds to a feature. Simply think of the entire convolution operation as a single processing step. In the operation of CNNs, this step is called a convolutional layer, which means that there are more layers to follow.

The operation principle of CNN is computationally intensive. While we can explain how a CNN works on just one piece of paper, the number of additions, multiplications, and divisions can increase quickly along the way. With so many factors affecting the number of computations, the problems that CNN's deal with can become complex with little effort, and it is no wonder that some chipmakers are designing and building specialized chips for the computational demands of CNNs.

Pooling:

Pooling is a method of compressing images and retaining important information. Its working principle can be understood with only a second degree in mathematics. Pooling will select different windows on the image, and select a maximum value within this window range. In practice, a square with a side length of two or three is an ideal setting with a two-pixel stride.

After the original image is pooled, the number of pixels it contains will be reduced to a quarter of the original, but because the pooled image contains the maximum value of each range in the original image, it still retains each range and each range. The degree of conformity of the characteristics. The pooled information is more focused on whether there are matching features in the image, rather than where these features exist in the image. Can help CNN to determine whether a feature is included in the image without having to be distracted by the location of the feature.

The function of the pooling layer is to pool one or some pictures into smaller pictures. We end up with an image with the same number of pixels, but with fewer pixels. Helps to improve the computationally expensive problem just mentioned. Reducing an 8-megapixel image to 2 megapixels beforehand can make subsequent work easier.

Linear rectifier unit:

An important step in the CNN is the Rectified Linear Unit (ReLU), which mathematically converts all negative numbers on the image to 0. This trick prevents CNNs from approaching 0 or infinity. The result after linear rectification will have the same number of pixels as the original image, except that all negative values will be replaced with zeros.

Deep learning:

After being filtered, rectified, and pooled, the original image will become a set of smaller images containing feature information. These images can then be filtered and compressed again, and their features will become more complex with each processing, and the images will become smaller. The final, lower-level processing layers contain simple features such as corners or light spots. Higher-order processing layers contain more complex features, such as shapes or patterns, and these higher-order features are usually well-recognized.

Fully connected layer:

Fully connected layers will collect the filtered pictures at a high-level, and convert this feature information into votes. In the traditional neural network architecture, the role of the fully connected layer is the main primary building block. When we input an image to this unit, it treats all pixel values as a one-dimensional list, rather than the previous two-dimensional matrix. Each value in the list determines whether the symbol in the picture is a circle or a cross. Since some values are better at discriminating forks and others are better at discriminating circles, these values will get more votes than others. The number of votes cast by all values for different options will be expressed in terms of weight or connection strength. So, every time CNN judges a new image, the image will go through many lower layers before reaching the fully connected layer. After voting, the option with the most votes will become the category for this image.

Like other layers, multiple fully-connected layers can be combined because their inputs (lists) and outputs (votes) are in similar forms. In practice, it is possible to combine multiple fully-connected layers, with several virtual, hidden voting options appearing on several of them. Whenever add a fully connected layer, the entire neural network can learn more complex feature combinations and make more accurate judgments.

Backpropagation:

The machine learning trick of backpropagation can help us decide the weights. To use backpropagation, need to prepare some pictures that already have the answer, and then must prepare an untrained CNN where the values of any pixels, features, weights, and fully connected layers are randomly determined. You can train this CNN with a labeled image.

After CNN processing, each image will eventually have a round of the election to determine the category. Compared with the previously marked positive solution, it is the identification error. By adjusting the features and weights, the error generated by the election is reduced. After each adjustment, these features and weights are fine-tuned a little higher or lower, the error is recalculated, and the adjustments that successfully reduced the error are retained. So, when we adjust each pixel in the convolutional layer and each weight in the fully connected layer, we can get a set of weights that are slightly better at judging the current image. Then repeat the above steps to identify more tagged images. During the training process, misjudgments in individual pictures will pass, but common features and weights in these pictures will remain. If there are enough labeled images, the values of these features and weights will eventually approach a steady state that is good at recognizing most images. But backpropagation is also a very computationally expensive step.

Hyperparameters:

  • 91ÊÓÆµ¹ÙÍø many features should be in each convolutional layer? 91ÊÓÆµ¹ÙÍø many pixels should be in each feature?
  • What is the window size in each pooling layer? 91ÊÓÆµ¹ÙÍø long should the interval be?
  • 91ÊÓÆµ¹ÙÍø many hidden neurons (options) should each additional fully connected layer have?

In addition to these issues, we need to consider many high-level structural issues, such as how many processing layers should be in a CNN and in what order. Some deep neural networks may include thousands of processing layers, and there are many design possibilities. With so many permutations, we can only test a small subset of the CNN settings. Therefore, the design of CNN usually evolves with the knowledge accumulated by the machine learning community, and occasionally there are some unexpected improvements in performance. In addition, many improvement techniques have been tested and found to be effective, such as using new processing layers or connecting different processing layers in more complex ways.

Published by Oct 06, 2022 Source :

Further reading

You might also be interested in ...

Headline
Trend
Intelligent Oil Mist Purification Technology for Machine Tools: From Air Cleaning to Smart Factory Accelerator
As CNC machining and precision metal processing continue to grow, machine tools release large amounts of oil mist, atomized coolant droplets, smoke, and fine oil particles during operation. Prolonged exposure to such environments not only endangers operator health but also affects machine accuracy and maintenance costs. Therefore, highly efficient oil mist filtration equipment has become an essential asset in modern machining facilities.
Headline
Trend
Oil Mist Filtration: Creating Safer Workplaces
In industrial machining processes, the generation of oil smoke and fine oil mist is unavoidable. Without effective collection and filtration, these airborne contaminants pose serious health risks to workers, increasing the likelihood of respiratory diseases and occupational illnesses. At the same time, accumulated oil smoke not only pollutes the work environment and degrades air quality but also accelerates wear and malfunction of machinery, resulting in higher maintenance costs. Furthermore, the presence of flammable oil mist increases the risk of fire hazards, endangering factory safety. To ensure stable, safe production that complies with regulations, oil smoke collection systems have become an essential protective measure in modern smart manufacturing¡ªsafeguarding employee health while enhancing equipment efficiency and environmental quality.
Headline
Trend
EU Rules and Taiwan¡¯s Textile Sustainability Shift
In recent years, the European Union has introduced a series of new regulations on sustainability and the circular economy, with the textile industry being one of the key areas under scrutiny. These regulations not only change how products are designed and manufactured, but also reshape collaboration models across global supply chains. For Taiwan¡¯s export-oriented textile sector, this means accelerating the pace of sustainable transformation in order to remain competitive in the European market¡ªwhile turning challenges into opportunities for brand and technological upgrades.
Headline
Trend
New Landscape in Precision Machining: Five Key Evolution Trends in CNC Toolroom Lathes
As global manufacturing competition intensifies, the precision machining industry is facing unprecedented challenges: parts are becoming smaller and more geometrically complex, machining accuracy requirements are rising, and delivery deadlines are increasingly compressed. As a core piece of equipment in this field, the CNC toolroom lathe is undergoing a profound transformation driven by both technological breakthroughs and evolving market demands.
Headline
Trend
Digital Transformation and Smart Manufacturing Trends in Machining Industry: Applications of Industry 4.0, IoT, and AI
The global manufacturing sector is undergoing an unprecedented wave of digital revolution. This trend brings technological advancement but also intensifies international market competition. The processing industry, a critical part of the manufacturing supply chain, faces multiple challenges including raw material price fluctuations, rising labor costs, and stricter environmental regulations. As consumer demands become more diverse and customized, the processing sector must swiftly adjust production methods. By embracing digital transformation, companies can enhance production efficiency and product quality, securing their competitive edge and market position. Digital transformation is no longer optional but an essential path for sustainable development in manufacturing¡¯s future.
Headline
Trend
Multi-Model Comparison: The Full Evolution from Manual to CNC Toolroom Lathes
High-precision lathes and toolroom lathes specialize in producing small, high-accuracy components, often used in prototype development and sample manufacturing. As CNC toolroom lathes become increasingly widespread, the industry is moving toward digital and automated control to shorten production cycles and improve machining quality and consistency.
Headline
Trend
CNC Market in India Exhibits CAGR Significantly Higher Than Global Average: Market Outlook
India¡¯s manufacturing sector is undergoing a critical transformation phase, with the rapid rise of industrial automation propelling the CNC machine tool market into a global growth hotspot. According to the latest research report by Technavio, the overall machine tool market in India is expected to increase by approximately USD 3.08 billion from 2024 to 2029, with a compound annual growth rate (CAGR) of 11.6%. In contrast, the global machine tool market CAGR is only about 5.07% (2023¨C2029), and the global CNC machine tool market CAGR is around 5.4% (2025¨C2029). India¡¯s market growth rate is nearly twice the global average. Furthermore, supported by its large industrial base and favorable policies, India has strong potential to become a key strategic region in the global CNC machine tool market.
Headline
Trend
Global Competitiveness of Taiwan¡¯s Lathe Industry
As global manufacturing moves toward high-precision and high-efficiency machining, lathe equipment remains an indispensable core tool in aerospace, automotive, energy, and medical sectors. Leveraging a solid manufacturing foundation and flexible customization capabilities, Taiwan has steadily expanded in the international lathe market, becoming a key supplier to both Europe, the United States, and emerging markets. To address diverse machining needs, Taiwanese manufacturers deploy both manual and CNC lathes, covering educational training, basic machining, and large-scale automated production¡ªdemonstrating high adaptability to market demands.
Headline
Trend
Comprehensive Analysis of Vertical Injection Molding Machine Trends: Intelligence, Multifunctionality, and Brand Competition
Vertical injection molding machines, owing to their unique structural design and operational advantages, are widely used in electronics, medical devices, automotive components, and high-precision plastic part manufacturing. They are especially indispensable for insert molding and in-mold decoration (IMD) processes. As global manufacturing advances toward smarter, higher-efficiency operations, the vertical injection molding machine market is showing several clear trends.
Headline
Trend
Textile Black Tech: The Superpowers of Functional Fabrics
Have you ever wondered why some jackets can block wind and rain without making you feel stuffy? Or why some sportswear wicks away sweat quickly, keeping you dry? This isn't magic; it's the superpower of high-performance textiles. They are no longer just clothes but key materials that improve quality of life and ensure personal safety.
Headline
Trend
Integrated Plastic Manufacturing: Industry Applications and Development Trends
Modern manufacturing faces challenges of small-batch diversity, high customization, and shortened time-to-market. Traditional segmented outsourcing models struggle to respond effectively. Mold design, injection molding, and post-processing are handled by different vendors, often causing unstable delivery schedules, significant quality variations, and difficulty in making changes. To address these trends, the industry is accelerating toward integrated ¡°one-stop¡± manufacturing services. Chiakuan Industrial Co., Ltd. has long focused on providing comprehensive plastic manufacturing solutions, covering mold design, injection molding, surface treatment, and assembly and packaging. This fully meets companies¡¯ demands for ¡°one-stop outsourcing,¡± significantly improving development efficiency and delivery quality, while enhancing rapid market response and competitiveness.
Headline
Trend
Edible Film Packaging: The Delicious and Eco-Friendly Solution
Imagine a candy wrapper you don't have to unwrap and that doesn't become trash. Would you eat it or throw it away? With modern technology advancing daily, the food packaging industry has developed edible film packaging to keep up with sustainability trends, allowing you to eat the protective layer directly while enjoying your food.
Agree