91ÊÓÆµ¹ÙÍø

What is Deep Learning?
Trend

What is Deep Learning?

Deep learning is a way of machine learning, by building a network, setting goals, and learning. Deep learning is not a panacea for artificial intelligence, it can only be designed for specific needs.
Published: Oct 06, 2022
What is Deep Learning?

What is Deep Learning (DL)?

Deep learning is a type of machine learning that uses artificial neural networks to enable digital systems to learn and make decisions based on unstructured, unlabeled data. Machine learning trains an AI to learn from the data it has acquired, identify patterns, make recommendations, and adjust. With deep learning digital systems don¡¯t just respond to a set of rules, but build knowledge from samples and then use the acquired knowledge to react, act, and operate like a human.

Deep Learning (DL) is a subfield of Machine Learning (ML) that uses algorithms similar to the way neurons are used in the human brain. Deep learning creates artificial neural networks and their different layers based on how the human brain works. Deep learning is the field of continuous learning and improvement by studying its algorithms. The work of deep learning is based on artificial neural networks created to mimic the human mind. With the rapid progress of big data analysis, neural networks are becoming more and more complex. This has led to computers accelerating their pace in observing, learning, and reacting to complex situations, sometimes with neural networks faster than the human mind. Models continue to be trained using large amounts of labeled data and neural networks with multiple layers. With image classification, translation capabilities, and speech recognition technology, deep learning can even decode pattern recognition without human help at all.

The foundation of deep learning is distributed representation in machine learning. The dispersion representation assumes that observations are generated by the interaction of different factors. On this basis, deep learning further assumes that the process of this interaction can be divided into multiple levels, representing multiple layers of abstraction for observations. Different numbers of layers and scales of layers can be used for different levels of abstraction. Deep learning uses this idea of hierarchical abstraction, where higher-level concepts are learned from lower-level concepts. This hierarchical structure is often built-up layer by layer using a greedy algorithm to select more efficient features for machine learning.

Why is Deep Learning Important?

Data scientists and developers use deep learning software to power computers to analyze large and complex data sets, perform complex and non-linear tasks, and respond to a text, speech, or images, often faster and more accurately than humans. These capabilities have many practical applications and create many opportunities for modern innovation.

As the amount of data continues to increase, and computing capacity becomes more powerful and cheaper, deep learning has become more important, whether it is in retail, healthcare, transportation, manufacturing, technology, and other fields. Investing is to drive innovation, gain business opportunities, and not be left behind.

91ÊÓÆµ¹ÙÍø does Deep Learning Work?

The operation of deep learning relies on neural network architectures in multiple layers, high-performance graphics processors deployed in the cloud or on clusters, and large amounts of labeled data to achieve extremely high accuracy in text, speech, and image recognition. All of this helps your developers build digital systems that approach human intelligence and reduce the time to train models from weeks to hours, accelerating time-to-value.

Computer programs have a hierarchical structure, with algorithms at each level applying a level of transformation to the input and creating a statistical model as a reference for the output. Various iterations will be considered until the desired level of accuracy is achieved. The data needs to go through several layers or feature sets to get to the final level, which is why this technique is called deep learning. Now with enough data, deep learning programs have been able to create complex hierarchical models using their iteration-driven outputs. They can create extremely accurate predictive models from massive amounts of unstructured raw data. Going forward, this will play an important role in enabling the Internet of Things (IoT), as much of the data generated by humans and machines is unstructured and therefore best handled by deep learning rather than humans.

What is a Deep Learning Architecture?

To make complex machine learning models easier to implement, developers turn to deep learning architectures. These architectures help simplify the process of collecting data that can be used to train neural networks. Can be used with these architectures to speed up training and inference of models.

Train a Deep Learning Model:
  • Supervised Learning -
    When using supervised learning, the algorithm is trained using a labeled dataset. This means that when the algorithm decides on segment information, it can use the tags contained in the data to check whether the decision is correct. With supervised learning, the data on which the model is trained must be provided by a human, who must label the data before using the data to train the algorithm.
  • Unsupervised Learning -
    When using unsupervised learning, the algorithm is trained on data that does not contain any labels or information, and the algorithm cannot use labels or information to check its judgments. Instead, the system sorts and categorizes data according to the patterns it can recognize.
  • Reinforcement Learning -
    When using reinforcement learning, the system can use a trial-and-error approach to make a series of decisions, achieving desired outcomes even in complex environments. When using reinforcement learning, the algorithm does not use the data set to decide, but the information obtained from the environment to make the decision.
  • Deep Reinforcement Learning -
    When deep learning is combined with reinforcement learning techniques, it results in a type of machine learning called deep reinforcement learning. Deep reinforcement learning uses the same trial-and-error decision-making and sophisticated goal-attainment methods as reinforcement learning, but also relies on the power of deep learning to process and understand large amounts of unstructured data.

What can Deep Learning Achieve?

  • Aerospace and Defense:
    Deep learning is widely used to help satellites identify specific objects or areas of interest and classify them as safe or unsafe for soldiers.
  • Medical Research:
    Deep learning is widely used in the field of medical research. In cancer research, for example, deep learning can be used to automatically detect the presence of cancer cells. UCLA researchers have created an advanced microscope that uses high-end data to teach deep learning applications how to precisely identify cancer cells. The scope of deep learning will eventually enable medical research to create personalized medicines tailored to an individual's genomic structure.
  • Automated Industry:
    The heavy machinery industry is an industry that requires a lot of safety measures. Deep learning ensures the safety of workers in such environments by detecting any person or object that enters the unsafe range of heavy machinery.
  • Chatbots and Service Bots:
    Deep learning drives all chatbots and service bots that interact with customers and enables them to provide intelligent answers to increasingly complex voice- and text-based queries. The technology in this area is currently evolving.
  • Image Colorization:
    Tasks that once had to be done manually and took a long time to complete can now be delegated to a computer. Black and white images can be colored using deep learning algorithms that can put image content in context and accurately recreate them with the correct colors.
  • Face Recognition:
    This ability to leverage deep learning is not only used for a range of security purposes but will soon support in-store purchases. Facial recognition is already widely used at airports to enable seamless, paperless check-in. Deep learning will go a step further, making facial recognition a means of payment, even when the person has changed their hairstyle or has poor lighting.
Published by Oct 06, 2022 Source :, Source :

Further reading

You might also be interested in ...

Headline
Trend
Intelligent Oil Mist Purification Technology for Machine Tools: From Air Cleaning to Smart Factory Accelerator
As CNC machining and precision metal processing continue to grow, machine tools release large amounts of oil mist, atomized coolant droplets, smoke, and fine oil particles during operation. Prolonged exposure to such environments not only endangers operator health but also affects machine accuracy and maintenance costs. Therefore, highly efficient oil mist filtration equipment has become an essential asset in modern machining facilities.
Headline
Trend
Oil Mist Filtration: Creating Safer Workplaces
In industrial machining processes, the generation of oil smoke and fine oil mist is unavoidable. Without effective collection and filtration, these airborne contaminants pose serious health risks to workers, increasing the likelihood of respiratory diseases and occupational illnesses. At the same time, accumulated oil smoke not only pollutes the work environment and degrades air quality but also accelerates wear and malfunction of machinery, resulting in higher maintenance costs. Furthermore, the presence of flammable oil mist increases the risk of fire hazards, endangering factory safety. To ensure stable, safe production that complies with regulations, oil smoke collection systems have become an essential protective measure in modern smart manufacturing¡ªsafeguarding employee health while enhancing equipment efficiency and environmental quality.
Headline
Trend
EU Rules and Taiwan¡¯s Textile Sustainability Shift
In recent years, the European Union has introduced a series of new regulations on sustainability and the circular economy, with the textile industry being one of the key areas under scrutiny. These regulations not only change how products are designed and manufactured, but also reshape collaboration models across global supply chains. For Taiwan¡¯s export-oriented textile sector, this means accelerating the pace of sustainable transformation in order to remain competitive in the European market¡ªwhile turning challenges into opportunities for brand and technological upgrades.
Headline
Trend
New Landscape in Precision Machining: Five Key Evolution Trends in CNC Toolroom Lathes
As global manufacturing competition intensifies, the precision machining industry is facing unprecedented challenges: parts are becoming smaller and more geometrically complex, machining accuracy requirements are rising, and delivery deadlines are increasingly compressed. As a core piece of equipment in this field, the CNC toolroom lathe is undergoing a profound transformation driven by both technological breakthroughs and evolving market demands.
Headline
Trend
Digital Transformation and Smart Manufacturing Trends in Machining Industry: Applications of Industry 4.0, IoT, and AI
The global manufacturing sector is undergoing an unprecedented wave of digital revolution. This trend brings technological advancement but also intensifies international market competition. The processing industry, a critical part of the manufacturing supply chain, faces multiple challenges including raw material price fluctuations, rising labor costs, and stricter environmental regulations. As consumer demands become more diverse and customized, the processing sector must swiftly adjust production methods. By embracing digital transformation, companies can enhance production efficiency and product quality, securing their competitive edge and market position. Digital transformation is no longer optional but an essential path for sustainable development in manufacturing¡¯s future.
Headline
Trend
Multi-Model Comparison: The Full Evolution from Manual to CNC Toolroom Lathes
High-precision lathes and toolroom lathes specialize in producing small, high-accuracy components, often used in prototype development and sample manufacturing. As CNC toolroom lathes become increasingly widespread, the industry is moving toward digital and automated control to shorten production cycles and improve machining quality and consistency.
Headline
Trend
CNC Market in India Exhibits CAGR Significantly Higher Than Global Average: Market Outlook
India¡¯s manufacturing sector is undergoing a critical transformation phase, with the rapid rise of industrial automation propelling the CNC machine tool market into a global growth hotspot. According to the latest research report by Technavio, the overall machine tool market in India is expected to increase by approximately USD 3.08 billion from 2024 to 2029, with a compound annual growth rate (CAGR) of 11.6%. In contrast, the global machine tool market CAGR is only about 5.07% (2023¨C2029), and the global CNC machine tool market CAGR is around 5.4% (2025¨C2029). India¡¯s market growth rate is nearly twice the global average. Furthermore, supported by its large industrial base and favorable policies, India has strong potential to become a key strategic region in the global CNC machine tool market.
Headline
Trend
Global Competitiveness of Taiwan¡¯s Lathe Industry
As global manufacturing moves toward high-precision and high-efficiency machining, lathe equipment remains an indispensable core tool in aerospace, automotive, energy, and medical sectors. Leveraging a solid manufacturing foundation and flexible customization capabilities, Taiwan has steadily expanded in the international lathe market, becoming a key supplier to both Europe, the United States, and emerging markets. To address diverse machining needs, Taiwanese manufacturers deploy both manual and CNC lathes, covering educational training, basic machining, and large-scale automated production¡ªdemonstrating high adaptability to market demands.
Headline
Trend
Comprehensive Analysis of Vertical Injection Molding Machine Trends: Intelligence, Multifunctionality, and Brand Competition
Vertical injection molding machines, owing to their unique structural design and operational advantages, are widely used in electronics, medical devices, automotive components, and high-precision plastic part manufacturing. They are especially indispensable for insert molding and in-mold decoration (IMD) processes. As global manufacturing advances toward smarter, higher-efficiency operations, the vertical injection molding machine market is showing several clear trends.
Headline
Trend
Textile Black Tech: The Superpowers of Functional Fabrics
Have you ever wondered why some jackets can block wind and rain without making you feel stuffy? Or why some sportswear wicks away sweat quickly, keeping you dry? This isn't magic; it's the superpower of high-performance textiles. They are no longer just clothes but key materials that improve quality of life and ensure personal safety.
Headline
Trend
Integrated Plastic Manufacturing: Industry Applications and Development Trends
Modern manufacturing faces challenges of small-batch diversity, high customization, and shortened time-to-market. Traditional segmented outsourcing models struggle to respond effectively. Mold design, injection molding, and post-processing are handled by different vendors, often causing unstable delivery schedules, significant quality variations, and difficulty in making changes. To address these trends, the industry is accelerating toward integrated ¡°one-stop¡± manufacturing services. Chiakuan Industrial Co., Ltd. has long focused on providing comprehensive plastic manufacturing solutions, covering mold design, injection molding, surface treatment, and assembly and packaging. This fully meets companies¡¯ demands for ¡°one-stop outsourcing,¡± significantly improving development efficiency and delivery quality, while enhancing rapid market response and competitiveness.
Headline
Trend
Edible Film Packaging: The Delicious and Eco-Friendly Solution
Imagine a candy wrapper you don't have to unwrap and that doesn't become trash. Would you eat it or throw it away? With modern technology advancing daily, the food packaging industry has developed edible film packaging to keep up with sustainability trends, allowing you to eat the protective layer directly while enjoying your food.
Agree