91ÊÓÆµ¹ÙÍø

What are Passive Components?
Knowledge

What are Passive Components?

Passive components are components found in electronic products that consume rather than generate energy, such as resistors, capacitors, and inductors. Trillions of these common basic components are manufactured every year. They are cheap to manufacture, and can be produced using a large variety of materials. Most are general-purpose types, but some are specially designed for niche markets.
Published: May 23, 2022
What are Passive Components?

In recent years, due to the increasing demand for light, thin, and compact consumer electronic products, there has been a global shortage of supply for passive components. As more and more electronic products become smaller and more compact, the demand for various miniature, high-capacity, and high-voltage passive components has skyrocketed. High technical challenges and difficulties in production has led to passive component products being in short supply.

What are Passive Components?

Passive components refer to components that provide relevant passive functions and work in conjunction with electronic products¡¯ active components. Active components are components like IC chips, memories, and diodes. The three major categories of passive components; resistors, capacitors, and inductors are indispensable in electronic products.

All electronic products must use both active components, and passive components. Active components are components that can actively perform operations independently, such as CPUs (Central Processing Units) or various ICs. Passive components play a passive protective role. When the current or voltage changes in an electronic product, passive components use voltage and noise filtering to protect the active components.

Passive components can operate without being connected to an electrical source and can regulate current and voltage, store static electricity, prevent electromagnetic wave interference, and filter current fluctuations. The resistance and impedance of passive components will not change when the voltage changes, as they will with active components.

The Function of Passive Components:

  • Resistors: Mainly adjust current and voltage.
  • Inductors: Mainly filter noise in the current, prevent electromagnetic wave interference, and stabilize the current.
  • Capacitors: Mainly store electrical energy, and perform functions such as coupling and coordination.
  • Integrated components: Resistors, capacitors, and inductors are often cross-integrated to form special functional components. Resistors, capacitors, or inductors are often integrated with transistors or amplifiers to create filters which can filter electrical signals. Couplers (LED plus resistors or diodes) can be used to regulate microwave signals.

Among passive components, capacitors have the largest market size. Capacitors can be divided into ceramic capacitors, aluminum capacitors, and solid-state capacitors. Their function is to store electrical energy in circuits for coordination and coupling.

Application of Passive Components:

Due to the strong demand for smartphones, electric vehicles, and automotive electronics, the application of passive components has expanded. With the increased complexity and diversification of product functions, power consumption has also increased, leading to more passive components being required for voltage regulation, current regulation, noise filtering, etc.

Taking a car as an example, in the past, a traditional car used about 1,000 to 2,000 passive components. Today an electric vehicle or autonomous driving vehicle will use an estimated 5,000 to 10,000 passive components, and the demand is continuing to grow.

Passive Component Features:

With traditional electrolytic capacitors and tantalum capacitors, it was not possible to miniaturize the capacitor and maintain the capacitance. 91ÊÓÆµ¹ÙÍøever, due to advancements in ceramic film stacking technology, multilayer ceramic capacitors (MLCCs) make miniaturization possible. The capacitance of MLCCs is proportional to the surface area of the capacitor and the number of stacked layers of ceramic films.

Electrolytic and tantalum capacitors still occupy a considerable market share, and each has its advantages. 91ÊÓÆµ¹ÙÍøever, with the popularization of high-performance consumer electronic products, such as personal computers and smartphones, the demand for MLCCs has increased.

Ceramic capacitors are favored because of their physical properties such as high voltage and heat resistance, wide operating temperature range, and low loss rate when used at high frequencies. They can be chipped to reduce volume and price, while maintaining high stability, so are very suitable for mass production. Aluminum capacitors are another class of high capacitance capacitors and their production is second only to MLCCs, but their performance is more affected by the environment. Tantalum capacitors have the advantages of DC bias and stable capacitance, low leakage loss, and pressure resistance to substrate deflection, but they have more pollution problems and are more expensive.

Besides the passive components required in traditional electronic products, the automotive industry has seen a rapid increase in the demand for passive components. Self-driving cars in the past required nearly 2,000 passive components, but now, electric vehicles are rapidly becoming popular, and many have designs that require as has many as 10,000 pieces. Not only MLCCs, but also aluminum capacitors now have a production delivery waiting period of more than half a year. The market will continue to be in short supply, and the projected increase in demand cannot be underestimated.

Published by May 23, 2022 Source :

Further reading

You might also be interested in ...

Headline
Knowledge
Exploring Major Types of Plastics and Their Properties
Plastic materials are indispensable raw materials in modern manufacturing. Based on their chemical structures and processing characteristics, plastics are mainly classified into two categories: thermoplastics and thermosets. Understanding the properties of these two types aids in material selection and product design, thereby enhancing manufacturing efficiency and product performance.
Headline
Knowledge
Analysis of Green Plastic Manufacturing
With the rise of environmental awareness and the global push for sustainable development goals, traditional plastics face increasing environmental pressure due to their challenges in decomposition and recycling. In response, the manufacturing industry is actively developing and applying eco-friendly plastic materials to build green manufacturing systems. This article explores the types, characteristics, and industrial applications of eco-friendly plastics to assist industry transformation and upgrading.
Headline
Knowledge
Key Parameters for Manufacturing High-Quality Plastic Products
Plastic materials are widely used across various industries due to their lightweight, ease of molding, and versatile properties. 91ÊÓÆµ¹ÙÍøever, different types of plastics exhibit distinct mechanical, thermal, chemical, and dimensional stability characteristics, which directly affect the final product¡¯s performance and service life. Therefore, understanding the performance indicators of plastics is fundamental to designing and manufacturing high-quality plastic products.
Headline
Knowledge
Dry Cutting vs. Wet Cutting: The Balance of Energy Saving, Cost, and Quality
In CNC machining, the choice of cooling method is not simply a technical preference but a multi-faceted trade-off involving cost control, machining quality, tool life, and production line stability. Both dry cutting and wet cutting have their advantages and limitations. To stand out in the fiercely competitive market, companies must shift from pursuing the ¡°theoretically optimal¡± to the ¡°contextually optimal¡± solution.
Headline
Knowledge
The Unsung Heroes of Cutting Tool Coatings: Performance Differences from TiN to DLC
In CNC machining, cutting tool coatings are a critical yet ¡°invisible¡± factor in boosting production efficiency and reducing costs. Although coating thickness is only a few microns, it significantly enhances tool hardness and wear resistance, optimizes heat dissipation, and improves cutting speed and machining accuracy. From classic Titanium Nitride (TiN) to advanced Diamond-Like Carbon (DLC) coatings, different coating materials not only offer varying hardness and heat resistance but also affect tool lifespan and machining adaptability.
Headline
Knowledge
Comprehensive Overview of Plastic Processing Methods: Mastering Key Technologies and Applications
Plastic products play an indispensable role in modern manufacturing, and various plastic processing techniques are crucial for achieving product diversity and efficient production. The following introduces five common and important plastic processing methods, helping readers gain a thorough understanding of their principles, features, and application scopes.
Headline
Knowledge
Fabric Knowledge Base: A Guide to Fiber Applications, From Beginner to Expert Selection
Textile fiber is the fundamental element that determines fabric performance and product suitability. Whether you are a designer, manufacturer, or consumer, understanding the unique characteristics of different fibers and their suitable applications is crucial for precise material selection and informed purchasing. This article will systematically introduce the applications of major natural and synthetic fibers and explain how blending them can overcome the limitations of single fibers, providing versatile functional solutions and helping you build a comprehensive knowledge base of textile applications.
Headline
Knowledge
What is Liquid Injection Molding?
Liquid Injection Molding (LIM) is a manufacturing process that involves injecting liquid silicone rubber (LSR) into precision molds, followed by heating and curing to form high-precision, complex plastic components. Compared to traditional thermoplastic injection molding, LIM offers superior accuracy and the capability to produce more intricate shapes, making it especially suitable for applications demanding high performance and reliability.
Headline
Knowledge
Precision Mold Development and Manufacturing: The Core Technology of Modern Plastic Production
Precision molds form the foundation for the quality and efficiency of plastic part molding. In today¡¯s highly competitive manufacturing environment, the design and fabrication of molds directly impact a product¡¯s functional performance and market competitiveness. Excellent mold development requires not only precise engineering design but also the integration of advanced machining technologies and rigorous quality control to achieve efficient and stable mass production.
Headline
Knowledge
The Magical Journey of Milk Tea
Pouring smooth, rich milk into robust black tea with a unique aroma, then stirring it all together, gets you a cup of milk tea. But do you really know what defines milk tea, and how it differs from the milk tea we enjoy today?
Headline
Knowledge
The Connection Between Textiles and Biomimicry: A Fabric Revolution Inspired by Nature
Lotus leaves after rain shed water droplets without a trace; delicate spider silk is stronger than steel. These are not coincidences but exquisite designs evolved by nature over millions of years. The textile industry is learning from this great designer¡ªnature itself¡ªthrough biomimicry, transforming natural wisdom into fabrics that perform better and are more eco-friendly.
Headline
Knowledge
What Is a CNC Machine Tool? Unveiling the Secret Behind Modern Factories¡¯ High Efficiency
CNC (Computer Numerical Control) machine tools are automated devices that control machining processes through computer programming. Known for their high efficiency, precision, and stability, they are widely used across industries such as aerospace, automotive, mold making, electronics, medical, and energy. With the rise of Industry 4.0 and smart manufacturing, CNC technology continues to evolve toward multi-axis machining, intelligent control, remote monitoring, and integrated processes. This widespread adoption not only enhances manufacturing performance but also reshapes the workforce, shifting traditional manual skills toward digital operation and system integration¡ªbringing greater production flexibility and competitiveness to businesses.
Agree