91ÊÓÆµ¹ÙÍø

What is a Power Converter?
Knowledge

What is a Power Converter?

The AC voltage is stepped down to the proper AC voltage through a transformer.
Published: Sep 28, 2022
What is a Power Converter?

What is a Voltage Stabilizer?

A voltage stabilizer or voltage regulator refers to a device that automatically maintains a constant voltage in electronic engineering. A regulator may be a simple feedforward design or may contain a negative feedback control loop. Regulators may also use electromechanical mechanisms or electronic modules. According to different designs, voltage regulators can be divided into DC voltage regulators and AC voltage regulators.

A voltage regulator can provide a constant voltage when the power supply changes or the load current changes. Voltage stabilizers are often used in power supply systems, working in conjunction with rectifiers, electronic filters, etc., to provide stable output voltages, such as the working voltage required by microprocessors and other components. In alternators and even large generators in power plants, voltage regulators control the stability of the output voltage. In a distributed power distribution system, the voltage stabilizer may be installed in a substation or along the direction of the conductor to ensure that users can get a stable voltage regardless of the power level.

What is a Power Converter?

A converter is a device that transforms AC voltage, current, and impedance. When an AC flows through the primary coil, an AC magnetic flux is generated in the iron core or magnetic core, which induces a current in the secondary coil. The transformer consists of an iron core or a magnetic core and a coil. The coil has two or more windings. The winding connected to the power supply is called the primary coil, and the rest of the windings are called secondary coils. In the generator, whether the coil moves through the magnetic field or the magnetic field moves through the fixed coil, an electric potential can be induced in the coil. In both cases, the value of the magnetic flux is unchanged, but the amount of magnetic flux that intersects the coil is different. Change is the principle of mutual induction. A transformer is a device that uses the electromagnetic mutual inductance effect to transform voltage, current, and impedance.

The transformer method first requires the AC voltage to be stepped down to the proper AC voltage through a transformer. This is an AC/AC conversion, and the step-down value is set by the winding ratio of the transformer. Then, the AC voltage stepped down by the transformer is full-wave rectified by a diode bridge rectifier and converted into a pulse voltage. Finally, the capacitor smoothers and outputs a DC voltage with a small ripple, which is the traditional AC/DC conversion method. The main components of the transformer are the primary coil, the secondary coil, and the iron core (magnetic core). The main functions are voltage transformation, current transformation, impedance transformation, isolation, and voltage regulation.

The Working Principle of the Converter:

The transformer consists of an iron core (or magnetic core) and a coil. The coil has two or more windings. The winding connected to the power supply is called the primary coil, and the rest of the windings are called secondary coils. It can transform AC voltage, current, and impedance. The simplest core transformer consists of a core made of soft magnetic material and two coils with different turns on the core.

The function of the iron core is to strengthen the magnetic coupling between the two coils. To reduce the eddy current and hysteresis loss in the iron, the iron core is made of laminated silicon steel sheets. There is no electrical connection between the two coils, and the coils are wound by insulated copper wires. to make. One coil connected to the AC power supply is called the primary coil, and the other coil connected to the electrical appliance is called the secondary coil. The actual transformer is very complicated, and there is inevitably copper loss (coil resistance heating), iron loss (iron core heating), and magnetic leakage (magnetic induction line closed by air).

What is AC?

Alternating Current (AC) is a current whose magnitude and polarity (direction) vary periodically with time. The number of times the current polarity changes in 1 second is called the frequency and is expressed in Hz.

What is DC?

Direct Current (DC) is a current whose polarity (direction) of flow does not change with time. A current that flows neither in polarity (direction) nor in magnitude with time is generally referred to as DC. Although the current whose polarity does not change with time and whose magnitude changes, is also DC, it is generally called Ripple current.

What is a DC/DC Converter?

A DC/DC converter is a machine that converts DC into DC and is a device that converts voltage using DC. Since electronic devices such as ICs have different operating voltage ranges, it is necessary to produce corresponding voltages one by one. A voltage lower than the original voltage is called a buck converter, and a voltage higher than the original voltage is called a boost converter.

Why do you need a DC/DC converter?

Electrical products that are plugged into an outlet to operate require an AC/DC converter to convert AC to DC, and most semiconductor components operate with DC. Each of the ICs mounted on a set of substrates has a fixed operating voltage range, and the requirements for voltage accuracy are also different. If a power supply with unstable voltage is supplied arbitrarily, it will cause problems such as malfunction or deterioration of characteristics. Therefore, to convert the required voltage or to stabilize it, a DC/DC converter is required.

A DC/DC converter is a voltage converter that effectively outputs a fixed voltage after converting the input voltage. DC/DC converters are classified into step-up DC/DC converters, step-down DC/DC converters, and buck-boost DC/DC converters. Three types of controls can be used according to requirements.

What are the Modulation Methods?

  • PFM (Pulse Frequency Modulation):
    The switching pulse width is fixed, and the output voltage can be stabilized by changing the frequency of the pulse output. The PFM control type has the advantage of low power consumption even if it is used for a long time, especially when the load is small.
  • PWM (Pulse Width Modulation):
    The frequency of the switching pulse is fixed, and the output voltage can be stabilized by changing the pulse output width. The PWM control type is highly efficient and has good output voltage ripple and noise.
  • PWM/PFM conversion type:
    In general, the performance differences of DC-DC converters using two different modulation methods, PFM and PWM, are as follows. The PWM/PFM conversion type implements PFM control at light loads and automatically switches to PWM control at heavy loads. PWM frequency, PFM duty cycle selection method.
Published by Sep 28, 2022 Source :

Further reading

You might also be interested in ...

Headline
Knowledge
Exploring Major Types of Plastics and Their Properties
Plastic materials are indispensable raw materials in modern manufacturing. Based on their chemical structures and processing characteristics, plastics are mainly classified into two categories: thermoplastics and thermosets. Understanding the properties of these two types aids in material selection and product design, thereby enhancing manufacturing efficiency and product performance.
Headline
Knowledge
Analysis of Green Plastic Manufacturing
With the rise of environmental awareness and the global push for sustainable development goals, traditional plastics face increasing environmental pressure due to their challenges in decomposition and recycling. In response, the manufacturing industry is actively developing and applying eco-friendly plastic materials to build green manufacturing systems. This article explores the types, characteristics, and industrial applications of eco-friendly plastics to assist industry transformation and upgrading.
Headline
Knowledge
Key Parameters for Manufacturing High-Quality Plastic Products
Plastic materials are widely used across various industries due to their lightweight, ease of molding, and versatile properties. 91ÊÓÆµ¹ÙÍøever, different types of plastics exhibit distinct mechanical, thermal, chemical, and dimensional stability characteristics, which directly affect the final product¡¯s performance and service life. Therefore, understanding the performance indicators of plastics is fundamental to designing and manufacturing high-quality plastic products.
Headline
Knowledge
Dry Cutting vs. Wet Cutting: The Balance of Energy Saving, Cost, and Quality
In CNC machining, the choice of cooling method is not simply a technical preference but a multi-faceted trade-off involving cost control, machining quality, tool life, and production line stability. Both dry cutting and wet cutting have their advantages and limitations. To stand out in the fiercely competitive market, companies must shift from pursuing the ¡°theoretically optimal¡± to the ¡°contextually optimal¡± solution.
Headline
Knowledge
The Unsung Heroes of Cutting Tool Coatings: Performance Differences from TiN to DLC
In CNC machining, cutting tool coatings are a critical yet ¡°invisible¡± factor in boosting production efficiency and reducing costs. Although coating thickness is only a few microns, it significantly enhances tool hardness and wear resistance, optimizes heat dissipation, and improves cutting speed and machining accuracy. From classic Titanium Nitride (TiN) to advanced Diamond-Like Carbon (DLC) coatings, different coating materials not only offer varying hardness and heat resistance but also affect tool lifespan and machining adaptability.
Headline
Knowledge
Comprehensive Overview of Plastic Processing Methods: Mastering Key Technologies and Applications
Plastic products play an indispensable role in modern manufacturing, and various plastic processing techniques are crucial for achieving product diversity and efficient production. The following introduces five common and important plastic processing methods, helping readers gain a thorough understanding of their principles, features, and application scopes.
Headline
Knowledge
Fabric Knowledge Base: A Guide to Fiber Applications, From Beginner to Expert Selection
Textile fiber is the fundamental element that determines fabric performance and product suitability. Whether you are a designer, manufacturer, or consumer, understanding the unique characteristics of different fibers and their suitable applications is crucial for precise material selection and informed purchasing. This article will systematically introduce the applications of major natural and synthetic fibers and explain how blending them can overcome the limitations of single fibers, providing versatile functional solutions and helping you build a comprehensive knowledge base of textile applications.
Headline
Knowledge
What is Liquid Injection Molding?
Liquid Injection Molding (LIM) is a manufacturing process that involves injecting liquid silicone rubber (LSR) into precision molds, followed by heating and curing to form high-precision, complex plastic components. Compared to traditional thermoplastic injection molding, LIM offers superior accuracy and the capability to produce more intricate shapes, making it especially suitable for applications demanding high performance and reliability.
Headline
Knowledge
Precision Mold Development and Manufacturing: The Core Technology of Modern Plastic Production
Precision molds form the foundation for the quality and efficiency of plastic part molding. In today¡¯s highly competitive manufacturing environment, the design and fabrication of molds directly impact a product¡¯s functional performance and market competitiveness. Excellent mold development requires not only precise engineering design but also the integration of advanced machining technologies and rigorous quality control to achieve efficient and stable mass production.
Headline
Knowledge
The Magical Journey of Milk Tea
Pouring smooth, rich milk into robust black tea with a unique aroma, then stirring it all together, gets you a cup of milk tea. But do you really know what defines milk tea, and how it differs from the milk tea we enjoy today?
Headline
Knowledge
The Connection Between Textiles and Biomimicry: A Fabric Revolution Inspired by Nature
Lotus leaves after rain shed water droplets without a trace; delicate spider silk is stronger than steel. These are not coincidences but exquisite designs evolved by nature over millions of years. The textile industry is learning from this great designer¡ªnature itself¡ªthrough biomimicry, transforming natural wisdom into fabrics that perform better and are more eco-friendly.
Headline
Knowledge
What Is a CNC Machine Tool? Unveiling the Secret Behind Modern Factories¡¯ High Efficiency
CNC (Computer Numerical Control) machine tools are automated devices that control machining processes through computer programming. Known for their high efficiency, precision, and stability, they are widely used across industries such as aerospace, automotive, mold making, electronics, medical, and energy. With the rise of Industry 4.0 and smart manufacturing, CNC technology continues to evolve toward multi-axis machining, intelligent control, remote monitoring, and integrated processes. This widespread adoption not only enhances manufacturing performance but also reshapes the workforce, shifting traditional manual skills toward digital operation and system integration¡ªbringing greater production flexibility and competitiveness to businesses.
Agree