91ÊÓÆµ¹ÙÍø

What Exactly are Passive Components, and Why are MLCCs So Popular?
Knowledge

What Exactly are Passive Components, and Why are MLCCs So Popular?

Electronic components are divided into two categories, active and passive; the difference lies in whether or not power is required to drive them. Semiconductor components driven by an electric circuit, such as transistors and diodes are often referred to as active components, while components which play a supporting role, such as resistors, capacitors, inductors, etc. are often referred to as passive. In recent years, a short supply of passive components in the market has drawn market attention to Multilayer Ceramic Capacitors (MLCCs). Because capacitance value is proportional to the surface area of the capacitor, the number of layers in a capacitor will affect the capacitance of the capacitor. Due to developments in ceramic film stacking technology, the capacitance value of MLCCs has increased significantly, and they are gradually replacing medium and low capacitance tantalum capacitors.
Published: Jun 09, 2022
What Exactly are Passive Components, and Why are MLCCs So Popular?

With MLCCs attracting new market attention, what exactly are the functions and advantages of these electronic components?

The function of the resistor is mainly to adjust the current and voltage, and the inductor is to filter the current noise, prevent electromagnetic interference, and stabilize the current. Capacitors are the main electrical energy storage components on the board, performing functions such as coupling and coordination. Among the three passive components, capacitors have the largest market size. They can be divided into ceramic capacitors, aluminum capacitors and tantalum capacitors. Currently, the most popular capacitors are MLCCs. (Multi-layer Ceramic Capacitors.)

Characteristics of Passive Components

The capacitance value of multilayer ceramic capacitors is proportional to the product surface area and the number of stacked layers of ceramic films. Product codes usually classify MLCCs by their package size. 91ÊÓÆµ¹ÙÍøever, due to the advancement of ceramic film stacking technology, a smaller volume may not necessarily mean a smaller capacitance value. MLCCs have began to replace electrolytic and tantalum capacitors. but the latter two still occupy a considerable market share, and each has its own advantages. 91ÊÓÆµ¹ÙÍøever, for high-performance consumer electronic products such as personal computers and smart phones, MLCC have pretty much replaced the other capacitors.

Ceramic capacitors are favored because of their physical properties such as high voltage and heat resistance, wide operating temperature range, and low loss rate when used at high frequencies. They can be produced as chips, reducing volume and price, and increasing stability. MLCCs are very suitable for mass production. Although the capacitance value of aluminum capacitors is high, and the degree of chip manufacturing is second only to MLCCs, their performance is more affected by the environment. Tantalum capacitors also have the advantages of DC bias and stable capacitance, low leakage loss, and pressure resistance to substrate deflection, but they have more pollution problems and are more expensive.

Not just traditional electronic products need passive components, but the automotive industry also needs passive components as well. In recent years, new products such as electric vehicles and self-driving cars have become popular. While cars in the past required nearly 2,000 passive components, newly designed cars may require as many as 10,000 passive components. This increase in demand has led to not only MLCCs being in short supply, but the delivery time of aluminum capacitors has also been extended to more than half a year. At present, the main global supplier of passive components is Japan. Although Taiwan is the second largest supplier of passive components, there has been relatively little investment in upstream material development. Nearly 70% of MLCC raw materials, such as interface ceramic powder, ceramic substrates, alumina substrates, quartz substrates, conductive adhesives, and cathode foils are sourced from Japan.

What is a Multilayer Ceramic Capacitor (MLCC)?

A Multi-layer Ceramic Capacitor (MLCC) is a kind of ceramic capacitor. Ceramic capacitors are divided into single-layer ceramic capacitors and multilayer ceramic capacitors (MLCC). Due to the advancement of ceramic film stacking technology, MLCCs can be directly attached through SMT (Surface Mount Technology), and the production speed is faster than electrolytic capacitors and tantalum capacitors. MLCCs have become the mainstream product of the capacitor industry, accounting for about 43% of the output value of capacitors, followed by aluminum electrolytic capacitors at about 32%.

MLCCs are composed of parallel ceramic and electrode materials. Its internal structure consists of ceramic layers and internal metal electrode layers alternately stacked. Each ceramic layer is sandwiched by two parallel electrodes up and down to form a flat capacitor. The inner electrode and the outer electrode are connected in parallel, so that the total storage capacity of the capacitor can be increased. The total capacitance of the multilayer ceramic capacitor is the sum capacitances of the layers.

The two main materials used in the construction of MLCCs, are a dielectric ceramic powder and internal and external electrodes. The main raw material of dielectric ceramic powder is barium titanate. After adding various additives, it forms NPO, COG, Y5V, X7R, Z5U and other types. Applications may vary according to the electrical characteristics desired. The dielectric ceramic powder determines the characteristics of MLCC. X7R, X5R and Y5V have high-capacitance values. In terms of grades, X5R and X7R are better than Y5V, while NPO is mainly used for communication products. In terms of price, for MLCCs of the same size and capacitance value, X7R¨PX5R; Y5V; Y5U.

The metal used for the electrodes can account for more than 35% of the production cost of the capacitor. To keep up with the demand for increased speed of CPUs and communication components, the number of layers in MLCCs must also be increased. With each additional layer added to the MLCC, it is necessary to add a layer of internal electrodes. Palladium metal used in these electrodes is a rare and precious metal, the price is quite expensive, and the main supply is from Russia. As stocks are often insufficient, the industry replaces the palladium metal electrode material with base metal (nickel, copper) and other metals, hoping to reduce the cost but at the cost of efficiency.

MLCCs have a variety of different specifications, and the difference between each product mainly lies in the capacitance value (storage power per unit voltage), size (above 1210, 0805, 0603, 0402, 0201 and other specifications), temperature stability (Y5V, X7R and NPO, etc.), upper limit of operating voltage, safety certification, ESR (capacitance/time required for charging and discharging) and Q value (the degree of loss of input energy). Taking temperature stability as an example, MLCCs will have different temperature stability due to the difference of the main raw material dielectric ceramic powder. Among them, Y5V type MLCCs have the lowest unit capacitance cost, X7R is the second, and NPO is the highest. Due to the low technical difficulty of production, low price and many competitors, the MLCC of X7R and X5R will gradually replace the Y5V type as portable electronic products require higher temperature stability.

MLCCs can be divided into 0201, 0402, 0603, 0805 and larger than 1206 according to the size of the product. Type 0805 and type 0603 are mainly used for information products such as motherboards and notebook computers. Type 0402 and 0201 are mainly used in high-end mobile phones. With the trend of thin and light electronic products, the proportion of products with 0402 and 0201 specifications continues to increase, and the growth momentum comes from the demand for consumer electronic products such as iPod/iPhone, game consoles and LCD TVs.

Major global suppliers of MLCCs include: Japan's Murata Mfg (25% of the market), TDK (14%), Taiyo Yuden (8%), Kyocera, Panasonic, and Taiwan's Yageo (13%), Walsin Technology (13%), Holystone, Honey Hope Honesty, Darfon, and mainland China¡¯s Fenghua. Japanese manufacturers mainly focus on high-capacity MLCCs. Taiwan's Yageo and Walsin Technology mainly produce medium-to-low-capacity products in bulk specifications, while Holystone mainly produces niche-type high-voltage and high-capacity MLC.

Published by Jun 09, 2022 Source :, Source :

Further reading

You might also be interested in ...

Headline
Knowledge
Exploring Major Types of Plastics and Their Properties
Plastic materials are indispensable raw materials in modern manufacturing. Based on their chemical structures and processing characteristics, plastics are mainly classified into two categories: thermoplastics and thermosets. Understanding the properties of these two types aids in material selection and product design, thereby enhancing manufacturing efficiency and product performance.
Headline
Knowledge
Analysis of Green Plastic Manufacturing
With the rise of environmental awareness and the global push for sustainable development goals, traditional plastics face increasing environmental pressure due to their challenges in decomposition and recycling. In response, the manufacturing industry is actively developing and applying eco-friendly plastic materials to build green manufacturing systems. This article explores the types, characteristics, and industrial applications of eco-friendly plastics to assist industry transformation and upgrading.
Headline
Knowledge
Key Parameters for Manufacturing High-Quality Plastic Products
Plastic materials are widely used across various industries due to their lightweight, ease of molding, and versatile properties. 91ÊÓÆµ¹ÙÍøever, different types of plastics exhibit distinct mechanical, thermal, chemical, and dimensional stability characteristics, which directly affect the final product¡¯s performance and service life. Therefore, understanding the performance indicators of plastics is fundamental to designing and manufacturing high-quality plastic products.
Headline
Knowledge
Dry Cutting vs. Wet Cutting: The Balance of Energy Saving, Cost, and Quality
In CNC machining, the choice of cooling method is not simply a technical preference but a multi-faceted trade-off involving cost control, machining quality, tool life, and production line stability. Both dry cutting and wet cutting have their advantages and limitations. To stand out in the fiercely competitive market, companies must shift from pursuing the ¡°theoretically optimal¡± to the ¡°contextually optimal¡± solution.
Headline
Knowledge
The Unsung Heroes of Cutting Tool Coatings: Performance Differences from TiN to DLC
In CNC machining, cutting tool coatings are a critical yet ¡°invisible¡± factor in boosting production efficiency and reducing costs. Although coating thickness is only a few microns, it significantly enhances tool hardness and wear resistance, optimizes heat dissipation, and improves cutting speed and machining accuracy. From classic Titanium Nitride (TiN) to advanced Diamond-Like Carbon (DLC) coatings, different coating materials not only offer varying hardness and heat resistance but also affect tool lifespan and machining adaptability.
Headline
Knowledge
Comprehensive Overview of Plastic Processing Methods: Mastering Key Technologies and Applications
Plastic products play an indispensable role in modern manufacturing, and various plastic processing techniques are crucial for achieving product diversity and efficient production. The following introduces five common and important plastic processing methods, helping readers gain a thorough understanding of their principles, features, and application scopes.
Headline
Knowledge
Fabric Knowledge Base: A Guide to Fiber Applications, From Beginner to Expert Selection
Textile fiber is the fundamental element that determines fabric performance and product suitability. Whether you are a designer, manufacturer, or consumer, understanding the unique characteristics of different fibers and their suitable applications is crucial for precise material selection and informed purchasing. This article will systematically introduce the applications of major natural and synthetic fibers and explain how blending them can overcome the limitations of single fibers, providing versatile functional solutions and helping you build a comprehensive knowledge base of textile applications.
Headline
Knowledge
What is Liquid Injection Molding?
Liquid Injection Molding (LIM) is a manufacturing process that involves injecting liquid silicone rubber (LSR) into precision molds, followed by heating and curing to form high-precision, complex plastic components. Compared to traditional thermoplastic injection molding, LIM offers superior accuracy and the capability to produce more intricate shapes, making it especially suitable for applications demanding high performance and reliability.
Headline
Knowledge
Precision Mold Development and Manufacturing: The Core Technology of Modern Plastic Production
Precision molds form the foundation for the quality and efficiency of plastic part molding. In today¡¯s highly competitive manufacturing environment, the design and fabrication of molds directly impact a product¡¯s functional performance and market competitiveness. Excellent mold development requires not only precise engineering design but also the integration of advanced machining technologies and rigorous quality control to achieve efficient and stable mass production.
Headline
Knowledge
The Magical Journey of Milk Tea
Pouring smooth, rich milk into robust black tea with a unique aroma, then stirring it all together, gets you a cup of milk tea. But do you really know what defines milk tea, and how it differs from the milk tea we enjoy today?
Headline
Knowledge
The Connection Between Textiles and Biomimicry: A Fabric Revolution Inspired by Nature
Lotus leaves after rain shed water droplets without a trace; delicate spider silk is stronger than steel. These are not coincidences but exquisite designs evolved by nature over millions of years. The textile industry is learning from this great designer¡ªnature itself¡ªthrough biomimicry, transforming natural wisdom into fabrics that perform better and are more eco-friendly.
Headline
Knowledge
What Is a CNC Machine Tool? Unveiling the Secret Behind Modern Factories¡¯ High Efficiency
CNC (Computer Numerical Control) machine tools are automated devices that control machining processes through computer programming. Known for their high efficiency, precision, and stability, they are widely used across industries such as aerospace, automotive, mold making, electronics, medical, and energy. With the rise of Industry 4.0 and smart manufacturing, CNC technology continues to evolve toward multi-axis machining, intelligent control, remote monitoring, and integrated processes. This widespread adoption not only enhances manufacturing performance but also reshapes the workforce, shifting traditional manual skills toward digital operation and system integration¡ªbringing greater production flexibility and competitiveness to businesses.
Agree