91ÊÓÆµ¹ÙÍø

3 Minutes to Understand What Machine Learning Is
Knowledge

3 Minutes to Understand What Machine Learning Is

What the really is artificial intelligence doing now? Artificial intelligence, machine learning, and deep learning can't tell the difference? Don't worry, we would analyze the differences in an easy-to-understand way. The following will solve the doubts!
Published: Sep 07, 2022
3 Minutes to Understand What Machine Learning Is

What is Artificial Intelligence?

Artificial Intelligence (AI), as the name suggests, is how to be wise. To put it simply, artificial intelligence mainly studies how to use the functions of computers to do some tasks that must be performed by humans; in short, it is the process of performing human intelligence through computers can display intelligence similar to that of humans.

What is Machine Learning

Machine learning (ML) is to use algorithms to classify or predict the data collected. In the future, when new data is obtained, the trained model can be used to make predictions. If these performance evaluations can be achieved through using past data to improve is called machine learning.

ML has a wide range of applications, such as recommendation engines, weather forecasting, face recognition, fingerprint recognition, license plate recognition, medical diagnosis assistance, lie detection, document analysis, speech processing, etc.

What Is Deep Learning?

Such deep learning (DL) techniques are called deep neural networks (DNNs). Neural networks are just a way of constructing functions. When we ask questions and prepare a lot of historical data as "archaeological questions", we hope that we can train the neural network to see new questions and answer them correctly: for example, the neural network for dog recognition can be correctly trained after training. Name unseen dogs arranged in layers that loosely mimic the human brain, learning patterns of patterns.

Wondering where is the difference? Let¡¯s understand them one by one.

What is the difference between artificial intelligence and machine learning?

Machine learning is an architecture included in artificial intelligence. Due to the recent popularity of machine learning, many people misuse artificial intelligence and machine learning. Artificial intelligence is a broad term. As long as it can show intelligent behavior, it can be called artificial intelligence. Even if there are many rule bases behind it, as long as it looks smart, it can also be called artificial intelligence.

Is there any invincible machine learning algorithm (model) that can be applied to any?

There is no one algorithm suitable for all analysis, which is also commonly known as the no free lunch theorem. It is necessary to work hard on the data, and the models used vary according to the data. To discuss the quality of the algorithm, it must be based on specific problem types. But there are some useful models based on rules of thumb, such as Logistic Regression, SVM, Random Forest, and common ones in Deep learning: CNN (image recognition), RNN (text, speech), GAN, etc...

Can machine learning be used in stock market, bond, fund forecasting?

It is difficult to rely solely on the historical data of the stock market, which is commonly known as technical analysis. The reason is because machine learning is a rule behind finding data. If the rule behind it keeps changing, it is basically difficult for a machine to learn something, but it happens that the rules behind the stock market will keep changing. Suppose the machine uses the data of the past ten years to find that as long as a certain K-line rises twice in a row, there is an 80% chance that it will rise for the third time, but it is possible that this rule will fail tomorrow, and even make you lose a lot of money. But it is possible if combined with more information, such as real-time semantic analysis of social networks or financial news, if there is information about an iPhone battery explosion today, the machine learning program can instantly determine the probability of the stock price falling, and make a buy action. But it is also possible that there is negative news, but the price still keeps rising. For example, the negative news of Bitcoin keeps rising, but the price keeps rising, breaking through new historical highs. On the other hand, the price of other cryptocurrencies has no negative news but keeps falling. Therefore, it is quite difficult to use machine learning to predict success in the stock market.

What is the difference between machine learning, data science and statistics?

Data science can be called data science as long as it uses data to analyze, and it can only use traditional statistics for analysis and prediction. Learn to equate.

Statistics has many mathematical proofs and assumptions, and it focuses on mathematical interpretability. A lot of statistical concepts are used behind the machine learning model, such as Linear regression, which is also derived from statistics. In addition, in practice, many machine learning relies on empirical rules and results theory to infer. For example, judge which model is better according to the prediction results, rather than prove it by mathematical deduction.

Kinds of Machine Learning?
  1. Supervised learning
  2. Unsupervised learning
  3. Semi-supervised learning
  4. Reinforcement learning
What is the difference between machine learning and deep learning?

Deep learning was originally a part of machine learning, but the speed of deep learning was too slow at that time, so it was replaced by SVM and other algorithms. 91ÊÓÆµ¹ÙÍøever, due to the growth of GPU hardware performance in recent years, deep learning has overcome previous speed problems and achievements. Obviously, after it became a hot topic, many people discussed deep learning as a separate field from machine learning. And the origin of the name "deep" in deep learning is because there are many layers in the neural network-like hidden layer, which visually looks very deep.

Published by Sep 07, 2022 Source :

Further reading

You might also be interested in ...

Headline
Knowledge
Exploring Major Types of Plastics and Their Properties
Plastic materials are indispensable raw materials in modern manufacturing. Based on their chemical structures and processing characteristics, plastics are mainly classified into two categories: thermoplastics and thermosets. Understanding the properties of these two types aids in material selection and product design, thereby enhancing manufacturing efficiency and product performance.
Headline
Knowledge
Analysis of Green Plastic Manufacturing
With the rise of environmental awareness and the global push for sustainable development goals, traditional plastics face increasing environmental pressure due to their challenges in decomposition and recycling. In response, the manufacturing industry is actively developing and applying eco-friendly plastic materials to build green manufacturing systems. This article explores the types, characteristics, and industrial applications of eco-friendly plastics to assist industry transformation and upgrading.
Headline
Knowledge
Key Parameters for Manufacturing High-Quality Plastic Products
Plastic materials are widely used across various industries due to their lightweight, ease of molding, and versatile properties. 91ÊÓÆµ¹ÙÍøever, different types of plastics exhibit distinct mechanical, thermal, chemical, and dimensional stability characteristics, which directly affect the final product¡¯s performance and service life. Therefore, understanding the performance indicators of plastics is fundamental to designing and manufacturing high-quality plastic products.
Headline
Knowledge
Dry Cutting vs. Wet Cutting: The Balance of Energy Saving, Cost, and Quality
In CNC machining, the choice of cooling method is not simply a technical preference but a multi-faceted trade-off involving cost control, machining quality, tool life, and production line stability. Both dry cutting and wet cutting have their advantages and limitations. To stand out in the fiercely competitive market, companies must shift from pursuing the ¡°theoretically optimal¡± to the ¡°contextually optimal¡± solution.
Headline
Knowledge
The Unsung Heroes of Cutting Tool Coatings: Performance Differences from TiN to DLC
In CNC machining, cutting tool coatings are a critical yet ¡°invisible¡± factor in boosting production efficiency and reducing costs. Although coating thickness is only a few microns, it significantly enhances tool hardness and wear resistance, optimizes heat dissipation, and improves cutting speed and machining accuracy. From classic Titanium Nitride (TiN) to advanced Diamond-Like Carbon (DLC) coatings, different coating materials not only offer varying hardness and heat resistance but also affect tool lifespan and machining adaptability.
Headline
Knowledge
Comprehensive Overview of Plastic Processing Methods: Mastering Key Technologies and Applications
Plastic products play an indispensable role in modern manufacturing, and various plastic processing techniques are crucial for achieving product diversity and efficient production. The following introduces five common and important plastic processing methods, helping readers gain a thorough understanding of their principles, features, and application scopes.
Headline
Knowledge
Fabric Knowledge Base: A Guide to Fiber Applications, From Beginner to Expert Selection
Textile fiber is the fundamental element that determines fabric performance and product suitability. Whether you are a designer, manufacturer, or consumer, understanding the unique characteristics of different fibers and their suitable applications is crucial for precise material selection and informed purchasing. This article will systematically introduce the applications of major natural and synthetic fibers and explain how blending them can overcome the limitations of single fibers, providing versatile functional solutions and helping you build a comprehensive knowledge base of textile applications.
Headline
Knowledge
What is Liquid Injection Molding?
Liquid Injection Molding (LIM) is a manufacturing process that involves injecting liquid silicone rubber (LSR) into precision molds, followed by heating and curing to form high-precision, complex plastic components. Compared to traditional thermoplastic injection molding, LIM offers superior accuracy and the capability to produce more intricate shapes, making it especially suitable for applications demanding high performance and reliability.
Headline
Knowledge
Precision Mold Development and Manufacturing: The Core Technology of Modern Plastic Production
Precision molds form the foundation for the quality and efficiency of plastic part molding. In today¡¯s highly competitive manufacturing environment, the design and fabrication of molds directly impact a product¡¯s functional performance and market competitiveness. Excellent mold development requires not only precise engineering design but also the integration of advanced machining technologies and rigorous quality control to achieve efficient and stable mass production.
Headline
Knowledge
The Magical Journey of Milk Tea
Pouring smooth, rich milk into robust black tea with a unique aroma, then stirring it all together, gets you a cup of milk tea. But do you really know what defines milk tea, and how it differs from the milk tea we enjoy today?
Headline
Knowledge
The Connection Between Textiles and Biomimicry: A Fabric Revolution Inspired by Nature
Lotus leaves after rain shed water droplets without a trace; delicate spider silk is stronger than steel. These are not coincidences but exquisite designs evolved by nature over millions of years. The textile industry is learning from this great designer¡ªnature itself¡ªthrough biomimicry, transforming natural wisdom into fabrics that perform better and are more eco-friendly.
Headline
Knowledge
What Is a CNC Machine Tool? Unveiling the Secret Behind Modern Factories¡¯ High Efficiency
CNC (Computer Numerical Control) machine tools are automated devices that control machining processes through computer programming. Known for their high efficiency, precision, and stability, they are widely used across industries such as aerospace, automotive, mold making, electronics, medical, and energy. With the rise of Industry 4.0 and smart manufacturing, CNC technology continues to evolve toward multi-axis machining, intelligent control, remote monitoring, and integrated processes. This widespread adoption not only enhances manufacturing performance but also reshapes the workforce, shifting traditional manual skills toward digital operation and system integration¡ªbringing greater production flexibility and competitiveness to businesses.
Agree