91ÊÓÆµ¹ÙÍø

What Is Reverse Engineering? Learn About Its Processes and Benefits
Knowledge

What Is Reverse Engineering? Learn About Its Processes and Benefits

Reverse engineering is a technical process used to analyze and research a target product. It is used to deduce and obtain the products design elements such as the product's processing flow, organizational structure, functional performance specifications, etc., to produce products with similar functions.
Published: Jun 01, 2022
What Is Reverse Engineering? Learn About Its Processes and Benefits

What Is Reverse Engineering?

The traditional design process is to create a new product from scratch, and then manufacture it. But what if the original CAD file is lost, or the original CAD data of the part cannot be obtained? Reverse engineering captures the appearance and size information of the finished product through 3D technology (such as 3D scanners, CT scanners, and three-coordinate measuring machines), and then reconstructs the CAD files of the original parts through 3D modeling software.

Reverse Engineering Requires a series of steps to gather precise information about product dimensions. Once collected, the data can be stored in a digital archive. Often, engineers enhance the design with new developments and innovations. Sometimes the design of the original model is completely copied.

Reverse Engineering is used to dissect the finished product to learn its functional material specifications and how to combine them. When a physical or manual model goes through the process of measuring ¡ú CAD data creation ¡ú 3D printing, or CAM output, it is called reverse engineering. This process can accelerate the timeliness and quality of product development, and can save time and costs.

Phase 1: 3D Scanning Services
After using a 3D Scanner to scan the object, the point data of the object is generated into an electronic file in STL format.

Phase 2: 3D Modeling Services
The scanned point data is used for point, line, and surface reverse 3D modeling to reconstruct the surface data of the object and create an original CAD file (STEP file format).

Why Is Reverse Engineering Necessary?

  1. Lost original CAD file:
    If the original design file has been lost, damaged, or cannot be restored or opened, the format cannot be modified. In this case, the CAD file (3D scanning + reverse modeling) will be restored through 3D scanning and reverse 3D modeling to quickly obtain digital data.
  2. Differences in how products are designed:
    In the past, designers may only do 2D graphic design, and then convert the data into 3D through CAD software; but now designers often make a 3D model by hand first, so a reverse engineering tool is required to convert this manual model into a 3D surface model, to facilitate the follow-up work.
  3. Analyze competing designs:
    When analyzing the strengths and weaknesses of competitors' products, it is usually preferred to use 3D Scanner technology to extract dimensional information and represent this information as a point cloud or automatic real-time mesh to further improve the quality of the products.
  4. Accelerate R&D innovation:
    Reverse engineering shortens product redesign time, and quickly captures design concepts without the need for manual hand drawings.
  5. Product design moves towards freeform surface modeling:
    At present, consumers not only consider functionality of products, but consider their appearance as well. 91ÊÓÆµ¹ÙÍøever, using the traditional manufacturing method, if the original appearance created by the designer cannot be fully expressed, it may be necessary to use reverse engineering to meet the designer's requirements.
  6. To assist manufacturers in rapid production:
    Manufacturers can use reverse engineering to quickly produce parts without purchasing expensive parts from OEMs with long lead times.
  7. It is not easy to obtain forward design data:
    Based on commercial secrets, the original factory does not provide the original CAD data to the downstream manufacturers, but only provides the sample to the manufacturer, so it is necessary to restore the original CAD data through reverse engineering tools.
  8. Test positive design results:
    Another important function of reverse engineering is the inspection of finished products. This is called CAI (Computer-Aided Inspection.) Generally, quality inspection only tests the finished product. Through reverse engineering tools, a comprehensive quality inspection can be performed on the finished product, which can be evaluated to improve the product¡¯s quality and stability.
  9. Preventive Maintenance Program:
    Reverse engineering can also be a key strategy in a manufacturer's proactive maintenance program. By reverse-engineering critical components before they fail, manufacturers can stock spare parts and reduce unplanned downtime.

Common Reverse Engineering Applications:

  • The original factory terminated the production of goods.
  • The files or components provided by the original factory do not conform to the design and need to be remade.
  • The original factory no longer exists, but consumers still need the goods.
  • The original design has been lost, damaged, and cannot be restored, the data file cannot be opened, or the file format cannot be modified.
  • Original design flaws that require improvement, such as thin or thick walls, require a process of digital modification and reproduction.
  • To make the designed part last longer, the product must be modified by design.
  • Analyze product strengths and weaknesses, or identify new developments through original designs.
  • Optimizing design parts so that the designed product can be made new or remanufactured in a cheaper way.
  • Analyze the advantages and disadvantages of competitors' products and further improve the quality of their products.
  • New product sample development.
  • Design of imitation and modification of products.
  • Rapid mold making.
  • Rapid prototyping.
  • Digital inspection of products.

Reverse engineering originated from hardware analysis in the commercial and military fields. Its purpose is to deduce the design principle of the product directly from the analysis of the finished product when the necessary production information cannot be easily obtained.

But on the other hand, reverse engineering may be mistaken for a serious infringement of intellectual property rights. But in practice, it may instead protect intellectual property owners. For example, in the field of integrated circuits, if a company is suspected of infringing intellectual property rights, reverse engineering techniques can be used to find evidence.

Published by Jun 01, 2022 Source :

Further reading

You might also be interested in ...

Headline
Knowledge
The Birth of a Fabric: The Science and Craft of Textiles
Although fabric may seem like an ordinary item in our daily lives, its creation involves complex and highly precise processes. From cotton grown in the fields to synthetic fibers produced in factories, each raw material carries unique properties and purposes. Whether it¡¯s the light, airy touch of a shirt or the high protective performance of medical textiles, behind it lies a production chain that spans agriculture, chemistry, and engineering.
Headline
Knowledge
Exploring Major Types of Plastics and Their Properties
Plastic materials are indispensable raw materials in modern manufacturing. Based on their chemical structures and processing characteristics, plastics are mainly classified into two categories: thermoplastics and thermosets. Understanding the properties of these two types aids in material selection and product design, thereby enhancing manufacturing efficiency and product performance.
Headline
Knowledge
Analysis of Green Plastic Manufacturing
With the rise of environmental awareness and the global push for sustainable development goals, traditional plastics face increasing environmental pressure due to their challenges in decomposition and recycling. In response, the manufacturing industry is actively developing and applying eco-friendly plastic materials to build green manufacturing systems. This article explores the types, characteristics, and industrial applications of eco-friendly plastics to assist industry transformation and upgrading.
Headline
Knowledge
Key Parameters for Manufacturing High-Quality Plastic Products
Plastic materials are widely used across various industries due to their lightweight, ease of molding, and versatile properties. 91ÊÓÆµ¹ÙÍøever, different types of plastics exhibit distinct mechanical, thermal, chemical, and dimensional stability characteristics, which directly affect the final product¡¯s performance and service life. Therefore, understanding the performance indicators of plastics is fundamental to designing and manufacturing high-quality plastic products.
Headline
Knowledge
Dry Cutting vs. Wet Cutting: The Balance of Energy Saving, Cost, and Quality
In CNC machining, the choice of cooling method is not simply a technical preference but a multi-faceted trade-off involving cost control, machining quality, tool life, and production line stability. Both dry cutting and wet cutting have their advantages and limitations. To stand out in the fiercely competitive market, companies must shift from pursuing the ¡°theoretically optimal¡± to the ¡°contextually optimal¡± solution.
Headline
Knowledge
The Unsung Heroes of Cutting Tool Coatings: Performance Differences from TiN to DLC
In CNC machining, cutting tool coatings are a critical yet ¡°invisible¡± factor in boosting production efficiency and reducing costs. Although coating thickness is only a few microns, it significantly enhances tool hardness and wear resistance, optimizes heat dissipation, and improves cutting speed and machining accuracy. From classic Titanium Nitride (TiN) to advanced Diamond-Like Carbon (DLC) coatings, different coating materials not only offer varying hardness and heat resistance but also affect tool lifespan and machining adaptability.
Headline
Knowledge
Comprehensive Overview of Plastic Processing Methods: Mastering Key Technologies and Applications
Plastic products play an indispensable role in modern manufacturing, and various plastic processing techniques are crucial for achieving product diversity and efficient production. The following introduces five common and important plastic processing methods, helping readers gain a thorough understanding of their principles, features, and application scopes.
Headline
Knowledge
Fabric Knowledge Base: A Guide to Fiber Applications, From Beginner to Expert Selection
Textile fiber is the fundamental element that determines fabric performance and product suitability. Whether you are a designer, manufacturer, or consumer, understanding the unique characteristics of different fibers and their suitable applications is crucial for precise material selection and informed purchasing. This article will systematically introduce the applications of major natural and synthetic fibers and explain how blending them can overcome the limitations of single fibers, providing versatile functional solutions and helping you build a comprehensive knowledge base of textile applications.
Headline
Knowledge
What is Liquid Injection Molding?
Liquid Injection Molding (LIM) is a manufacturing process that involves injecting liquid silicone rubber (LSR) into precision molds, followed by heating and curing to form high-precision, complex plastic components. Compared to traditional thermoplastic injection molding, LIM offers superior accuracy and the capability to produce more intricate shapes, making it especially suitable for applications demanding high performance and reliability.
Headline
Knowledge
Precision Mold Development and Manufacturing: The Core Technology of Modern Plastic Production
Precision molds form the foundation for the quality and efficiency of plastic part molding. In today¡¯s highly competitive manufacturing environment, the design and fabrication of molds directly impact a product¡¯s functional performance and market competitiveness. Excellent mold development requires not only precise engineering design but also the integration of advanced machining technologies and rigorous quality control to achieve efficient and stable mass production.
Headline
Knowledge
The Magical Journey of Milk Tea
Pouring smooth, rich milk into robust black tea with a unique aroma, then stirring it all together, gets you a cup of milk tea. But do you really know what defines milk tea, and how it differs from the milk tea we enjoy today?
Headline
Knowledge
The Connection Between Textiles and Biomimicry: A Fabric Revolution Inspired by Nature
Lotus leaves after rain shed water droplets without a trace; delicate spider silk is stronger than steel. These are not coincidences but exquisite designs evolved by nature over millions of years. The textile industry is learning from this great designer¡ªnature itself¡ªthrough biomimicry, transforming natural wisdom into fabrics that perform better and are more eco-friendly.
Agree