91ÊÓÆµ¹ÙÍø

Check The Important Objectives of Tool Designing In The Manufacturing Process
Knowledge

Check The Important Objectives of Tool Designing In The Manufacturing Process

The discipline of tooling design is fundamental to manufacturing. The cost of manufacturing and of the end product depends heavily upon tool design.
Published: Oct 16, 2020
Check The Important Objectives of Tool Designing In The Manufacturing Process

Tool design affects the cost in several ways. First, it determines the tool life, which is how long the tool last before requiring a replacement. Second, it affects the quality of the product, and any cost of poor quality and reworks costs, which adds to the total cost of the final product. Third, tool design can affect the cycle time of the manufacturing process, which enables us to produce more or fewer units in a given time. For these reasons, it is important to understand the fundamentals of tool design.

This article will cover various basic aspects of tooling design.

What is tooling design?

Tooling design is a specialized area of manufacturing engineering which comprises the analysis, planning, design, construction, and application of tools, methods, and procedures necessary to increase manufacturing productivity.

What is a die tool?

In the article: Mold Design Is The Key, An Effective Way To Reduce The Cost Of Die Casting Mold, we defined die is a specialized tool that is used to shape or cut the manufacturing material. The material includes fabric, wood, plastic which are into predetermined shapes. Man-made mass-created products require tools, similar to the shaped die, to be designed in progress specifications in order to start the production process. Externally designed die-cut tools secondary objects will be constructed that have been lead to the failure, following in whole product batches remain waste. The die tool designer should support the manufacturer from the pre-production work to the production process. The tool designers should follow a few things before starting the work, it¡¯s about product blueprints, iron out potential, and design flow. The tool designers will protect the manufacturer in many ways; capital, and additional pains by securing the product is machine-ready before it operates on the press of the product.
The tooling design plays a vital role in all stages of the product manufacturing process. Once the production process is completed without any errors, design for the manufacturer will give the assurance for the quality and productivity of material. Progressive Die Design is one of the best methods of die tool designing. Make sure to use it in different sectors of manufacturing.

Tool Design General Process

The tool designer should follow the below process for manufacturing a product.

  1. The statement and analysis of the problem
  2. The tool designer can assess the manufacturing product status and they can analyze the problem in the process of manufacturing. The tool designer should give the statement of the product plan to the manufacturer, mentioning the blueprint and detailed structure of the manufacturer expected product.

  3. Analysis of the manufacturer requirements
  4. The tool designer should design the tool according to the manufacturer expected product requirements. A designer can analyze the structure, feel etc., of the product. The manufacturer main requirement is cost cut and material usage, being in this two limitations the tool should be designed.

  5. Development of initial ideas and design alternatives
  6. The tool should be designed and that should develop initial ideas for the manufactured products. Tool designer should also design an alternative tool for the same product. The tool may be used or not but for the safe side, designers should prepare a similar kind of tool for any misleads.

  7. Finalisation of design ideas
  8. The manufacturer finalizes the expected product, the tool designer should conclude the tool designing process based on the manufacturer need. If the designer gets the confidence that the tool reaches the manufacturer¡¯s idea then the tool designing process will be finished.

Important objectives of tool designing in the manufacturing process

  1. Reducing cost levels
  2. The manufacturing costs will increase the gross profit of the company. Manufacturing expenses, which include materials, employees, and costs of equipment, etc., are used to calculate the expenses of a company. The tool design reduces all over the cost of manufacturing products. It can produce parts of the product with respect to the cost. It reduces the cost of special tooling systems by designing every product effectively.

  3. Quick deliverables
  4. The company should maintain the good process in the process of manufacturing. For better output manufacturers should maintain good communication with all the people related to product development. By using the tool design, a manufacturer can get the highest production rate in the manufactured product. The manufacturer will also get the product parts as quickly as possible. A manufacturer who have the good understanding of how a product change affects all functional groups.
    The quality of the product: The quality is a trust that ensures consumers receive goods free from damages and meet their requirements. The manufacturer main aim is to maintain the good quality of the product. The tooling design is used successfully to deliver the quality product continually with the required precision. The quality of the product increases customers loyalty, it gains repeat business along with new customers from referrals. Maintain or improve manufacturer position in the market. The quality deliverables improve safety and reduce liability risks.

  5. User-friendly
  6. The designing tools are safe in case of utilization, the manufacturer can use it easily. For product development, the manufacturer feels the tool designing is easy to design the product as per the expectations. It is simple for the manufacturer to learn and monitor the process of producing a new product. For a manufacturer, it is easy to navigate the process of developing the product. As a produced person, they don¡¯t want any third party to access the production system.

Conclusion

The tooling design is very much useful for the manufacturers to develop the new products within the given time. There are several kinds of usages like cost-cutting, on-time deliveries, quality of the product etc., Manufacturers usually depend on the employees to develop the product, but they fail to give the output on time because of labor shortage or machine problems etc., But finally the tool designing became a more useful element in the development of the products. Manufacturers feel comfortable in using the tool design, they should reach the customer¡¯s expectations and grab the loyalty in the market.

Published by Oct 16, 2020 Source : Source :

Further reading

You might also be interested in ...

Headline
Knowledge
The Birth of a Fabric: The Science and Craft of Textiles
Although fabric may seem like an ordinary item in our daily lives, its creation involves complex and highly precise processes. From cotton grown in the fields to synthetic fibers produced in factories, each raw material carries unique properties and purposes. Whether it¡¯s the light, airy touch of a shirt or the high protective performance of medical textiles, behind it lies a production chain that spans agriculture, chemistry, and engineering.
Headline
Knowledge
Analysis of Green Plastic Manufacturing
With the rise of environmental awareness and the global push for sustainable development goals, traditional plastics face increasing environmental pressure due to their challenges in decomposition and recycling. In response, the manufacturing industry is actively developing and applying eco-friendly plastic materials to build green manufacturing systems. This article explores the types, characteristics, and industrial applications of eco-friendly plastics to assist industry transformation and upgrading.
Headline
Knowledge
Key Parameters for Manufacturing High-Quality Plastic Products
Plastic materials are widely used across various industries due to their lightweight, ease of molding, and versatile properties. 91ÊÓÆµ¹ÙÍøever, different types of plastics exhibit distinct mechanical, thermal, chemical, and dimensional stability characteristics, which directly affect the final product¡¯s performance and service life. Therefore, understanding the performance indicators of plastics is fundamental to designing and manufacturing high-quality plastic products.
Headline
Knowledge
Dry Cutting vs. Wet Cutting: The Balance of Energy Saving, Cost, and Quality
In CNC machining, the choice of cooling method is not simply a technical preference but a multi-faceted trade-off involving cost control, machining quality, tool life, and production line stability. Both dry cutting and wet cutting have their advantages and limitations. To stand out in the fiercely competitive market, companies must shift from pursuing the ¡°theoretically optimal¡± to the ¡°contextually optimal¡± solution.
Headline
Knowledge
The Unsung Heroes of Cutting Tool Coatings: Performance Differences from TiN to DLC
In CNC machining, cutting tool coatings are a critical yet ¡°invisible¡± factor in boosting production efficiency and reducing costs. Although coating thickness is only a few microns, it significantly enhances tool hardness and wear resistance, optimizes heat dissipation, and improves cutting speed and machining accuracy. From classic Titanium Nitride (TiN) to advanced Diamond-Like Carbon (DLC) coatings, different coating materials not only offer varying hardness and heat resistance but also affect tool lifespan and machining adaptability.
Headline
Knowledge
Comprehensive Overview of Plastic Processing Methods: Mastering Key Technologies and Applications
Plastic products play an indispensable role in modern manufacturing, and various plastic processing techniques are crucial for achieving product diversity and efficient production. The following introduces five common and important plastic processing methods, helping readers gain a thorough understanding of their principles, features, and application scopes.
Headline
Knowledge
Fabric Knowledge Base: A Guide to Fiber Applications, From Beginner to Expert Selection
Textile fiber is the fundamental element that determines fabric performance and product suitability. Whether you are a designer, manufacturer, or consumer, understanding the unique characteristics of different fibers and their suitable applications is crucial for precise material selection and informed purchasing. This article will systematically introduce the applications of major natural and synthetic fibers and explain how blending them can overcome the limitations of single fibers, providing versatile functional solutions and helping you build a comprehensive knowledge base of textile applications.
Headline
Knowledge
What is Liquid Injection Molding?
Liquid Injection Molding (LIM) is a manufacturing process that involves injecting liquid silicone rubber (LSR) into precision molds, followed by heating and curing to form high-precision, complex plastic components. Compared to traditional thermoplastic injection molding, LIM offers superior accuracy and the capability to produce more intricate shapes, making it especially suitable for applications demanding high performance and reliability.
Headline
Knowledge
The Magical Journey of Milk Tea
Pouring smooth, rich milk into robust black tea with a unique aroma, then stirring it all together, gets you a cup of milk tea. But do you really know what defines milk tea, and how it differs from the milk tea we enjoy today?
Headline
Knowledge
The Connection Between Textiles and Biomimicry: A Fabric Revolution Inspired by Nature
Lotus leaves after rain shed water droplets without a trace; delicate spider silk is stronger than steel. These are not coincidences but exquisite designs evolved by nature over millions of years. The textile industry is learning from this great designer¡ªnature itself¡ªthrough biomimicry, transforming natural wisdom into fabrics that perform better and are more eco-friendly.
Headline
Knowledge
What Is a CNC Machine Tool? Unveiling the Secret Behind Modern Factories¡¯ High Efficiency
CNC (Computer Numerical Control) machine tools are automated devices that control machining processes through computer programming. Known for their high efficiency, precision, and stability, they are widely used across industries such as aerospace, automotive, mold making, electronics, medical, and energy. With the rise of Industry 4.0 and smart manufacturing, CNC technology continues to evolve toward multi-axis machining, intelligent control, remote monitoring, and integrated processes. This widespread adoption not only enhances manufacturing performance but also reshapes the workforce, shifting traditional manual skills toward digital operation and system integration¡ªbringing greater production flexibility and competitiveness to businesses.
Headline
Knowledge
The Resistor's Role in Modern Manufacturing
A resistor is a fundamental and indispensable component in electronic circuits. Its physical design is not arbitrary; rather, it is closely linked to its function, power requirements, and manufacturing method. Every detail, from its size and material to its structure, reveals its intended application. Understanding a resistor's form is like reading its "user manual," helping us to apply it more precisely.
Agree