91ÊÓÆµ¹ÙÍø

What is Precision Machining?
Knowledge

What is Precision Machining?

Precision machining is the process of removing material from a workpiece to chang the dimensions or properties of the workpiece so that is can become a more precise product that will meet very exact specifications.
Published: Jun 14, 2022
What is Precision Machining?

What is Precision Machining?

Precision machining is the process of removing material from a workpiece until it meets precise tolerances. There are many types of precision machine tools, including milling, turning, and electrical discharge machining (EDM) tools. Precision machining tools can be controlled by computers, and these machines are called Computer Numerical Control (CNC) machining tools.

Almost all metals, and many other materials, such as plastic and wood, can be precision machined using precision machining tools. These machines are operated by professional and well-trained mechanics. In order for the cutting tool to do its job, it must move in the specified direction in order to make the correct cut. The rate at which material is removed from the workpiece is called the "cutting speed." The workpiece can also be moved during machining, and this secondary movement is called "feeding." These actions, along with the sharpness of the cutting tool, determine the efficiency and accuracy of the precision machine.

High-quality precision machining requires the ability to follow specific blueprints produced by CAD (Computer Aided Design) or CAM (Computer Aided Manufacturing) programs such as AutoCAD and TurboCAD. The software can help create complex 3D diagrams or outlines needed to manufacture tools, machines or objects. These blueprints must be strictly followed to ensure product integrity. Although most precision machining companies use some form of CAD/CAM program, they still often use hand-drawn sketches in the initial stages of design.

Precision machining is used on a variety of materials, including steel, bronze, graphite, glass and plastic, to name a few. Depending on the sizes of the project and the materials used, a variety of precision machining tools will be used. Any combination of lathes, milling machines, drilling machines, saws and grinders, and high-speed robots can be used. The aerospace industry may use high-speed machining, while woodworking tool manufacturing may use photochemical etching and milling processes. Production runs or a specific number of any particular item can be in the thousands, or just a few. CNC equipment allows precise dimensions to be followed throughout the product run.

What is CNC?

CNCs automate machine tools by executing pre-programmed sequences of machine control commands through a computer. This is in contrast to machines that are manually controlled by handwheels or levers, or mechanically controlled by cams alone.

In modern CNC systems, the design of mechanical parts and their manufacturing procedures is highly automated. The mechanical dimensions of the part are defined using CAD software and then translated into manufacturing instructions by CAM software. The generated instructions are converted by ("post-processor" software) into the specific commands needed for a specific machine to produce that component and then loaded into the CNC machine.

Since any given component may require the use of many different tools - drills, saws, etc. - modern machines often combine multiple tools into a single "unit.¡± In other installations, many different machines are used with external controllers and robots to move components from machine to machine. In either case, the series of steps required to produce any part is highly automated and produces a part that closely matches the original CAD.

As controller hardware has evolved, so have the factories as well. As a safety measure, one change made is to enclose the entire mechanism in a large enclosure, often with additional safety locks to keep operators away from the workpiece during operation. Most new CNC systems manufactured today are 100% electronically controlled.

CNC-like systems are now used for almost any process that requires a series of movements and operations. These include laser cutting, welding, friction stir welding, ultrasonic welding, flame and plasma cutting, bending, rotating, punching, pinning, gluing, fabric cutting, sewing, tape and fiber placement, routing, pick and place, and sawing.

What is CNC Machining?

CNC machining is a manufacturing process in which pre-programmed computer software instructs the movement of factory tools and machines. This process can be used to control a range of complex machinery, from grinders and lathes to milling machines and routers. With CNC machining, 3D cutting tasks can be accomplished in one set of cues.

When a CNC system is activated, the required cuts are programmed into the software and assigned to the corresponding tools and machines that perform the prescribed dimensional tasks, just like a robot.

In CNC programming, code generators in digital systems often assume that the mechanism is flawless. But the possibility of error does exist, and errors can be multiplied whenever the machine is instructed to cut in multiple directions at the same time.

Programs for CNC machine tools are entered into a computer via a keypad. CNC programming is stored in the computer's memory. The code itself is written and edited by programmers. The CNC system is by no means static, as new cues can be added to the original program through modified code.

What is Milling Machining?

Milling is a machining process that uses a rotary cutter to remove material from a workpiece by advancing (or feeding) the cutter into the workpiece in a specific direction. The tool can also be held at an angle relative to the axis of the tool. Milling covers a variety of different operations and machines, and can be used for machining small parts as well as for large, heavy-duty combination milling jobs. Milling is one of the most common processes used for machining custom parts to precise tolerances.

Milling can be done with a wide variety of machine tools. After the advent of CNC, milling machines developed into machining centers: milling machines enhanced by automatic tool changers, tool magazines or conveyor belts, CNC functions, cooling systems and housings. Milling centers are generally classified as vertical machining centers (VMC) or horizontal machining centers (HMC).

The integration of milling and turning processes, and vice versa, was initially done combining machine turning with milling cutters. This has led to a new class of machine tools; multitasking machines (MTMs), which are specialized for milling and turning within the same working envelope.

What is Turning Machine?

Turning involves the rotation of a workpiece (usually metal, but may also be wood, plastic or stone) near a cutting tool. Turning is usually performed on a lathe.

There are different types of turning operations including: linear turning, threading, tapered turning and external grooving. In linear turning, a single cutting tool moves in parallel across the workpiece as the workpiece rotates. In tapered turning, a tapered turning attachment is used. For external grooving turning operations, grooves are cut into the workpiece to a specific depth. Because they are in the split turning method, the grooves are not completely removed.

A lathe is used to shape material by rotating a workpiece into a cutting tool. There are three types of lathes: engine lathes which have an automated slide and power feed, turret lathes which have a turret for holding various different cutting tools, and special purpose lathes designed to perform special machining operations. Lathes can range in size from small and portable to large floor-standing machines.

What is Electric Discharge Machining?

Electric Discharge Machining (EDM) is a manufacturing process that utilizes electrical discharge to obtain a desired shape. Material is removed from the workpiece by a series of rapid and repeated electrical discharges between two electrodes, separated by a dielectric fluid and subjected to an electrical voltage. One of the electrodes is called the tool electrode, or simply "tool" or "electrode", while the other is called the workpiece electrode or "workpiece".

Wire EDM and Die Sink EDM

There are two kinds of EDM, Wire EDM and Die Sink EDM. In Wire EDM (wire erosion) a graphite wire electrode is fed into the cutting area and the graphite electrode is eroded as it machines the workpiece. The work area is submerged in deionized water which functions as an insulator and constantly flushes the conductive material.

Die Sink EDM, uses an electrode and a workpiece immersed in oil or other dielectric fluid. The electrode and workpiece are connected to a suitable power source, creating an electrical potential between the two parts. As the electrode approaches the workpiece, dielectric breakdown occurs and small spark jumps occur in the fluid that forms the plasma channel. Vaporized material is then flashed out away from the cutting area.

All of the above are processes that remove excess, raw material from a work-piece, while maintaining close tolerances, to create a finished product. Simply put, it means shaping large pieces of material into more precise items, so that they can meet very exact specifications.

Published by Jun 14, 2022 Source :

Further reading

You might also be interested in ...

Headline
Knowledge
The Birth of a Fabric: The Science and Craft of Textiles
Although fabric may seem like an ordinary item in our daily lives, its creation involves complex and highly precise processes. From cotton grown in the fields to synthetic fibers produced in factories, each raw material carries unique properties and purposes. Whether it¡¯s the light, airy touch of a shirt or the high protective performance of medical textiles, behind it lies a production chain that spans agriculture, chemistry, and engineering.
Headline
Knowledge
Exploring Major Types of Plastics and Their Properties
Plastic materials are indispensable raw materials in modern manufacturing. Based on their chemical structures and processing characteristics, plastics are mainly classified into two categories: thermoplastics and thermosets. Understanding the properties of these two types aids in material selection and product design, thereby enhancing manufacturing efficiency and product performance.
Headline
Knowledge
Analysis of Green Plastic Manufacturing
With the rise of environmental awareness and the global push for sustainable development goals, traditional plastics face increasing environmental pressure due to their challenges in decomposition and recycling. In response, the manufacturing industry is actively developing and applying eco-friendly plastic materials to build green manufacturing systems. This article explores the types, characteristics, and industrial applications of eco-friendly plastics to assist industry transformation and upgrading.
Headline
Knowledge
Key Parameters for Manufacturing High-Quality Plastic Products
Plastic materials are widely used across various industries due to their lightweight, ease of molding, and versatile properties. 91ÊÓÆµ¹ÙÍøever, different types of plastics exhibit distinct mechanical, thermal, chemical, and dimensional stability characteristics, which directly affect the final product¡¯s performance and service life. Therefore, understanding the performance indicators of plastics is fundamental to designing and manufacturing high-quality plastic products.
Headline
Knowledge
Dry Cutting vs. Wet Cutting: The Balance of Energy Saving, Cost, and Quality
In CNC machining, the choice of cooling method is not simply a technical preference but a multi-faceted trade-off involving cost control, machining quality, tool life, and production line stability. Both dry cutting and wet cutting have their advantages and limitations. To stand out in the fiercely competitive market, companies must shift from pursuing the ¡°theoretically optimal¡± to the ¡°contextually optimal¡± solution.
Headline
Knowledge
The Unsung Heroes of Cutting Tool Coatings: Performance Differences from TiN to DLC
In CNC machining, cutting tool coatings are a critical yet ¡°invisible¡± factor in boosting production efficiency and reducing costs. Although coating thickness is only a few microns, it significantly enhances tool hardness and wear resistance, optimizes heat dissipation, and improves cutting speed and machining accuracy. From classic Titanium Nitride (TiN) to advanced Diamond-Like Carbon (DLC) coatings, different coating materials not only offer varying hardness and heat resistance but also affect tool lifespan and machining adaptability.
Headline
Knowledge
Comprehensive Overview of Plastic Processing Methods: Mastering Key Technologies and Applications
Plastic products play an indispensable role in modern manufacturing, and various plastic processing techniques are crucial for achieving product diversity and efficient production. The following introduces five common and important plastic processing methods, helping readers gain a thorough understanding of their principles, features, and application scopes.
Headline
Knowledge
Fabric Knowledge Base: A Guide to Fiber Applications, From Beginner to Expert Selection
Textile fiber is the fundamental element that determines fabric performance and product suitability. Whether you are a designer, manufacturer, or consumer, understanding the unique characteristics of different fibers and their suitable applications is crucial for precise material selection and informed purchasing. This article will systematically introduce the applications of major natural and synthetic fibers and explain how blending them can overcome the limitations of single fibers, providing versatile functional solutions and helping you build a comprehensive knowledge base of textile applications.
Headline
Knowledge
What is Liquid Injection Molding?
Liquid Injection Molding (LIM) is a manufacturing process that involves injecting liquid silicone rubber (LSR) into precision molds, followed by heating and curing to form high-precision, complex plastic components. Compared to traditional thermoplastic injection molding, LIM offers superior accuracy and the capability to produce more intricate shapes, making it especially suitable for applications demanding high performance and reliability.
Headline
Knowledge
Precision Mold Development and Manufacturing: The Core Technology of Modern Plastic Production
Precision molds form the foundation for the quality and efficiency of plastic part molding. In today¡¯s highly competitive manufacturing environment, the design and fabrication of molds directly impact a product¡¯s functional performance and market competitiveness. Excellent mold development requires not only precise engineering design but also the integration of advanced machining technologies and rigorous quality control to achieve efficient and stable mass production.
Headline
Knowledge
The Magical Journey of Milk Tea
Pouring smooth, rich milk into robust black tea with a unique aroma, then stirring it all together, gets you a cup of milk tea. But do you really know what defines milk tea, and how it differs from the milk tea we enjoy today?
Headline
Knowledge
The Connection Between Textiles and Biomimicry: A Fabric Revolution Inspired by Nature
Lotus leaves after rain shed water droplets without a trace; delicate spider silk is stronger than steel. These are not coincidences but exquisite designs evolved by nature over millions of years. The textile industry is learning from this great designer¡ªnature itself¡ªthrough biomimicry, transforming natural wisdom into fabrics that perform better and are more eco-friendly.
Agree