91ÊÓÆµ¹ÙÍø

Future Development Trends of the Laser Processing Industry
Trend

Future Development Trends of the Laser Processing Industry

Lasers are used in a wide range of industries, especially in processing. The entire laser processing industry is currently moving in the direction of high power, ultra-short pulse, and intelligence.
Published: Dec 07, 2022
Future Development Trends of the Laser Processing Industry

Market Development of the Laser Processing Industry:

The laser industry is developing rapidly in the world, and now it has been widely used in laser intelligent manufacturing equipment, biomedical beauty, laser display, laser radar, high-speed optical communication, artificial intelligence, machine vision and sensing, 3D recognition, laser printing, scientific research, and other fields. Lasers are widely used in various industries, and some applications are gradually declining due to technological progress, such as the optical storage industry. 91ÊÓÆµ¹ÙÍøever, most of the applications have been kept new for a long time, such as communication, medical beauty, national defense and military, instruments, etc., and even some new applications have been discovered with technological progress, such as for Light Detection and Ranging (LiDAR), Additive Manufacturing (AM), semiconductor Lithography equipment, etc. Especially in the application of processing, laser technology has unique characteristics, can be used for both additive and subtractive manufacturing, and is non-contact processing, so it occupies an important position in the manufacturing industry. Laser technology has unique characteristics, can be used for both additive and subtractive manufacturing, and is non-contact processing, so it occupies an important position in the manufacturing industry. The entire laser processing industry is moving in the direction of high power, ultra-short pulse, and intelligence.

With the development of global intelligence, the demand for lasers in smart devices, consumer electronics, new energy, and other fields continues to grow. As well as the continuous expansion of emerging applications such as medical and beauty equipment, the global market size of lasers will continue to maintain steady growth.

What is a Semiconductor Laser?

Semiconductor lasers, also known as laser diodes, are lasers that use semiconductor materials as working substances. Due to the difference in material structure, the specific process of different types of laser production is quite special. The commonly used working substances are GaAs, CdS, InP, ZnS, and so on. Semiconductor lasers have the best energy conversion efficiency among all types of lasers. On the one hand, they can be used as the core pump source of various optically pumped lasers such as fiber lasers and solid-state lasers. With the continuous breakthrough of semiconductor laser technology in power, efficiency, brightness, life, multi-wavelength, modulation rate, etc., semiconductor lasers are widely and directly used in material processing, medical treatment, optical communication, sensing, national defense, and other fields.

Optically exciting semiconductor laser technology uses high-power laser diodes as laser excitation light sources and then uses aluminum gallium indium arsenic semiconductor materials as gain media to generate lasers. This technology has been used in many applications since its development. It is emerging in the field, and it has changed the shortcoming of wavelength limitation in solid-state laser technology. In the optically excited semiconductor laser technology, the control and design of the semiconductor gain medium can generate near-infrared light wavelengths from 920nm to 1154nm, and then generate 355nm to 577nm by frequency doubling or triple frequency technology. Visible light wavelength. And these special wavelengths have been widely used in medical treatment, life science, and industry.

The Future Development Trend of Laser Processing:

Ultra-short pulse and high peak power are the future development trend of solid-state lasers, and are suitable for circuit board welding and cutting metal sheets. The higher the laser power, the faster the processing speed. Using diodes as excitation light sources can reduce the cost of ultrashort pulse lasers. In the macro processing part, the higher the power of the laser source, the higher the processing efficiency. In the micro processing part, the shorter the pulse, the smaller the heat zone on the workpiece, and the higher the machining accuracy. After sorting out the development trend of the global laser industry, it is concluded that the future development trend of laser processing will develop in the direction of a higher power, shorter pulse, and low price.

  • High-power laser:
    The efficiency of laser processing is closely related to the material of the workpiece itself, the wavelength of the laser light, the power of the laser light, and the pulse time. Improving the power of laser light has been the director of the industry's efforts, especially in macro processing, such as welding, cutting, cladding, etc., and laser power is also highly correlated with processing efficiency. Therefore, doubling the power can nearly double the efficiency and reduce the processing time by 50%, but the cost may only increase by 30%, which is attractive for the production line. The laser light power used in laser cutting has increased from 1KW to 8KW in the past few years, and some manufacturers have even exhibited 10KW, and the development of fiber laser sources for laser metal cutting to high power has become a trend. In the welding part, the 120KW laser is the product of the development trend of high-power lasers. The lasers used in national defense and military use can reach the level of 200KW, so the continuous development of higher power is the future trend of lasers.
    From the perspective of the development trend of the entire high-power laser industry, fiber laser combines the waveguide characteristics of optical fibers and the integrated characteristics of semiconductors and has outstanding advantages such as good beam quality, high efficiency, good heat dissipation, compact structure, and flexible operation. It represents the development direction of high-power and high-brightness lasers. Another high-power laser trend is the use of Direct Diode Laser (DDL). The output power of a single laser diode varies from milliwatts to several watts, and the power can be increased by combining individual lasers into bar laser diodes and stacks of bar laser diodes. A standard laser diode stripe is 1 cm wide. Technological advances have enabled DDLs to generate output powers over 20 kilowatts in multimode systems at about 25% less cost than fiber lasers of the same power.
  • Ultra-Short Pulse Laser (ULP):
    One of the characteristics of an ultrashort pulse (USP) laser is that the pulse width is very short, which is a short laser light. In the field of laser technology, pulsed lasers with a time width between picosecond (ps), that is, 10-10s (1 ps=10-12s) to several femtoseconds (fs) (1 fs=10-15s) are generally called super short pulse laser. Ultrashort pulse laser is a general term for picosecond laser and femtosecond laser. Since ultrashort pulse lasers are widely used to detect ultrafast dynamic processes in the fields of science and engineering technology. Such as the excitation of electronic states in atoms, the dynamic response of materials and electronic devices, and the transient recording of various explosion shock waves, etc. The ultrashort pulse laser Pulsed lasers are also often referred to as ultrafast lasers.
    The application of ultra-fast lasers in the industry is more inclined to precision machining. Since many precision components do not want thermal effects to affect product quality, ultra-short pulse laser processing can minimize thermal effects, so some industry players call it cold working. The components required by the electronic industry such as semiconductors and displays usually have high product quality requirements, but it is difficult to avoid thermal effects in other processing methods. Therefore, an ultrashort pulse laser is a good choice. The Industrial Internet of Things and electric cars require a large number of electronic components, including passive components, sensors, integrated circuits, power components, etc. Therefore, ultrashort pulse lasers are gradually gaining attention in the electronics industry and will be gradually adopted in the fields of automobiles, aerospace, biomedicine, and energy in the future, and the popularity of ultrashort pulse lasers will be just around the corner.

In addition to being used in lithography, lasers are suitable for processing semiconductor wafers. Whether it is cutting, marking, drilling, measuring, annealing, or removal processes, lasers are required to complete these semiconductor processes. Injection processing has relative advantages. In the future, with the trend of laser characteristics such as high power and ultra-short pulse, and the price of lasers will decline year by year, it will become popular, and many applications will continue to be discovered.

Published by Dec 07, 2022 Source :

Further reading

You might also be interested in ...

Headline
Trend
The Path to Upgrading Metal Fabrication: Digital Transformation, Low-Carbon Challenges, and Global Opportunities
Facing resource- and energy-intensive production processes, the metal fabrication industry must harness smart manufacturing and automation¡ªdeploying CNC machining, robotic arms, and AI monitoring¡ªto cut costs and errors while enhancing precision and delivery reliability. Integration of ERP, MES, and APS platforms increases process transparency and enables real-time scheduling adjustments, forming a seamless data and management loop. It¡¯s recommended to support this with global market size data and figures on rising automation investments to boost credibility.
Headline
Trend
Urgent Need for Low-Carbon Transformation in the Metal Fabrication Industry
The urgent need for low-carbon transformation is especially pronounced in the metal fabrication industry, which has long been resource- and energy-intensive with high carbon emissions, making it a key sector for addressing climate change and global carbon neutrality goals.
Headline
Trend
The Multifaceted Innovative Impact of Microfactories on the Manufacturing Industry
Compared to traditional large factories, microfactories have lower investment costs and modular design advantages. Equipment and production units can be quickly replicated and replaced, reducing downtime and maintenance costs, enabling companies to respond more flexibly to market changes and product adjustments. Moreover, microfactories can shorten time-to-market by quickly responding to market demands and technological innovations. Through modular design and digitized production processes, new product development and market introduction speed up significantly, offering a clear advantage in competitive markets.
Headline
Trend
Trends in Advanced Material Processing Technologies and High-Precision Machine Tool Development
In aerospace, automotive, and high-performance manufacturing industries, advanced alloys (such as titanium alloys and nickel-based superalloys) and composites (such as thermoplastic carbon fiber composites) are becoming mainstream due to their lightweight, high strength, and high-temperature resistance. By 2025, the global aerospace composite market is expected to expand rapidly with an annual compound growth rate of about 13.9%, driven by the demand for environmental protection and net-zero emissions, which will further innovate and apply thermoplastic composite technologies. These new materials present challenges such as high hardness, tool wear, heat management, and processing deformation control, requiring processing equipment to have higher rigidity, precision, and thermal stability. Additionally, the production process's demand for rapid prototyping, modular assembly, and recycling drives the simultaneous upgrading of materials and equipment.
Headline
Trend
Intelligent Oil Mist Purification Technology for Machine Tools: From Air Cleaning to Smart Factory Accelerator
As CNC machining and precision metal processing continue to grow, machine tools release large amounts of oil mist, atomized coolant droplets, smoke, and fine oil particles during operation. Prolonged exposure to such environments not only endangers operator health but also affects machine accuracy and maintenance costs. Therefore, highly efficient oil mist filtration equipment has become an essential asset in modern machining facilities.
Headline
Trend
Oil Mist Filtration: Creating Safer Workplaces
In industrial machining processes, the generation of oil smoke and fine oil mist is unavoidable. Without effective collection and filtration, these airborne contaminants pose serious health risks to workers, increasing the likelihood of respiratory diseases and occupational illnesses. At the same time, accumulated oil smoke not only pollutes the work environment and degrades air quality but also accelerates wear and malfunction of machinery, resulting in higher maintenance costs. Furthermore, the presence of flammable oil mist increases the risk of fire hazards, endangering factory safety. To ensure stable, safe production that complies with regulations, oil smoke collection systems have become an essential protective measure in modern smart manufacturing¡ªsafeguarding employee health while enhancing equipment efficiency and environmental quality.
Headline
Trend
EU Rules and Taiwan¡¯s Textile Sustainability Shift
In recent years, the European Union has introduced a series of new regulations on sustainability and the circular economy, with the textile industry being one of the key areas under scrutiny. These regulations not only change how products are designed and manufactured, but also reshape collaboration models across global supply chains. For Taiwan¡¯s export-oriented textile sector, this means accelerating the pace of sustainable transformation in order to remain competitive in the European market¡ªwhile turning challenges into opportunities for brand and technological upgrades.
Headline
Trend
New Landscape in Precision Machining: Five Key Evolution Trends in CNC Toolroom Lathes
As global manufacturing competition intensifies, the precision machining industry is facing unprecedented challenges: parts are becoming smaller and more geometrically complex, machining accuracy requirements are rising, and delivery deadlines are increasingly compressed. As a core piece of equipment in this field, the CNC toolroom lathe is undergoing a profound transformation driven by both technological breakthroughs and evolving market demands.
Headline
Trend
Digital Transformation and Smart Manufacturing Trends in Machining Industry: Applications of Industry 4.0, IoT, and AI
The global manufacturing sector is undergoing an unprecedented wave of digital revolution. This trend brings technological advancement but also intensifies international market competition. The processing industry, a critical part of the manufacturing supply chain, faces multiple challenges including raw material price fluctuations, rising labor costs, and stricter environmental regulations. As consumer demands become more diverse and customized, the processing sector must swiftly adjust production methods. By embracing digital transformation, companies can enhance production efficiency and product quality, securing their competitive edge and market position. Digital transformation is no longer optional but an essential path for sustainable development in manufacturing¡¯s future.
Headline
Trend
Multi-Model Comparison: The Full Evolution from Manual to CNC Toolroom Lathes
High-precision lathes and toolroom lathes specialize in producing small, high-accuracy components, often used in prototype development and sample manufacturing. As CNC toolroom lathes become increasingly widespread, the industry is moving toward digital and automated control to shorten production cycles and improve machining quality and consistency.
Headline
Trend
CNC Market in India Exhibits CAGR Significantly Higher Than Global Average: Market Outlook
India¡¯s manufacturing sector is undergoing a critical transformation phase, with the rapid rise of industrial automation propelling the CNC machine tool market into a global growth hotspot. According to the latest research report by Technavio, the overall machine tool market in India is expected to increase by approximately USD 3.08 billion from 2024 to 2029, with a compound annual growth rate (CAGR) of 11.6%. In contrast, the global machine tool market CAGR is only about 5.07% (2023¨C2029), and the global CNC machine tool market CAGR is around 5.4% (2025¨C2029). India¡¯s market growth rate is nearly twice the global average. Furthermore, supported by its large industrial base and favorable policies, India has strong potential to become a key strategic region in the global CNC machine tool market.
Headline
Trend
Global Competitiveness of Taiwan¡¯s Lathe Industry
As global manufacturing moves toward high-precision and high-efficiency machining, lathe equipment remains an indispensable core tool in aerospace, automotive, energy, and medical sectors. Leveraging a solid manufacturing foundation and flexible customization capabilities, Taiwan has steadily expanded in the international lathe market, becoming a key supplier to both Europe, the United States, and emerging markets. To address diverse machining needs, Taiwanese manufacturers deploy both manual and CNC lathes, covering educational training, basic machining, and large-scale automated production¡ªdemonstrating high adaptability to market demands.
Agree