91Ƶ

What are the Different Types of Screw Extruders and Their Functions?
Knowledge

What are the Different Types of Screw Extruders and Their Functions?

What is a screw extruder? A screw extruder is a type of pump that is used in a plastic injection machine to pump molten plastic. It is one of the most common types of machinery used in the modified plastics and polymer processing industry. Extruders can be divided into single-screw extruders and twin-screw extruders, each with their own processing advantages and disadvantages.
Published: May 11, 2022
What are the Different Types of Screw Extruders and Their Functions?

What Is a Single Screw Extruder?

A single-screw extruder is a type of plastic injection pump that uses a screw which rotates inside a heated barrel. It is the most mature form of technology used for plastic injection. Its simple structure is easy to manufacture, and has high processing efficiency and low price. Single-screw extruders are generally comprised of three sections, each performing a separate function; the extrusion system, the transmission system, and the heating and cooling system. Extruders are categorized according to the length, diameter, pitch, and depth of the screw in each of these sections.

Relevant Processing Characteristics and Principles of Single-Screw Extruder:

  • Plasticizing ability: A single screw is highly suitable for plasticizing polymer pellets for extrusion because the degradation of polymers during processing is low.
  • Material conveying mechanism: The material is conveyed through the single-screw extruder through a process called friction drag. The melting properties and viscous drag determine the conveying capacity of the single-screw extruder.
  • Processing speed: The velocity of distribution in single-screw extruders is relatively well-defined but determination of velocity in twin-screw extruders is rather complex.
  • Self-cleaning: Single screw extruders do not have this feature.
  • Applicable fields of Single Screw Extruders: Single screw extruders are mainly used in the production of pipes, plates, and sheets. They are widely used for the manufacturing of PP-R pipes, PE gas pipes, PEX cross-linked pipes, aluminum-plastic composite pipes, ABS pipes, PVC pipes, HDPE silicon core pipes, and various co-extrusion composite pipes. The speed and structure of the extrusion screw can be adapted for the extrusion of sheets, wires, rods etc.
Advantages of Single Screw Extruders:
  • Single screw extruders can be used for operations on a variety of different types of materials.
  • They have high throughput.
  • They are much cheaper.
Disadvantages of Single Screw Extruders:
  • Compared with twin-screw extruders, the sheer force of single-screw extruders is smaller.
  • Since the transport of plastic material is by friction, there are limitations in feeding performance.
  • Some materials, such as pastes or powders, are difficult to mix in single screw extruders making them unsuitable for use in certain processes.

The Basic Structure and Function of a Single Screw Extruder:

  1. Extrusion System: The function of the extrusion system is to melt and plasticize the polymer material to form a uniform melt while the material is transitioning from a glass state to a viscous flow state. And in this process, a stable pressure is maintained, and the screw continuously conveys the material to the die. The extrusion system includes a feeding device and a screw and barrel. The heat, rotation speed of the screw, and pressurization all need to be coordinated according to the material being processed.
  2. Transmission system: The transmission system is usually composed of a motor, a reducer, and bearings, and supplies the torque required to drive the screw in the extrusion process. To ensure uniform product quality. the screw speed must remain stable during processing, even when there is a change of screw load. In some situations, it may be necessary for the screw to vary its speed during different phases of the injection. In most extruders, the change of screw speed is achieved by adjusting the motor speed. The transmission system requires a good lubrication system and a rapid braking device.
  3. Heating and cooling system: The heating and cooling system of the extruder consists of a heating device and a cooling device which are applied to maintain consistent temperature of material during the extrusion process. The cooling device is generally in the extruder barrel near the bottom of the hopper. Barrel cooling can be either water-cooled or air-cooled. Small, and medium-sized extruders generally use air-cooling while large-scale extruders generally use water-cooling or a combination of the two. The cooling device strengthens the conveying effect of solid materials, and prevents material particles from sticking to the barrel or screw due to excessive temperature rise.

What Is a Twin-Screw Extruder?

A twin-screw extruder consists of a transmission device that uses two screws. There are many kinds of twin-screw extruders, which can be divided into meshing types and non-meshing types.

Related Processing Characteristics and Principles of Twin-Screw Extruders:

  • Plasticizing ability: The twin-screw has good mixing and plasticizing ability. Because the material only stays in the extruder for a short time, it is suitable for powder processing.
  • Material conveying mechanism: The material is conveyed by positive displacement in the twin-screw extruder. With the rotation of the screw, the material is forcibly pushed forward by the intermeshing threads. The proximity of the screw grooves is important. Maximum positive displacement delivery can be achieved with closely intermeshing, counter-rotating, twin-screw extruders.
  • Processing speed: The twin-screw extruder has a meshing zone, which is designed to assure sufficient mixing, uniform heat transfer, strong melting ability, and good extrusion performance. The twin-screw extruder has many advantages, but it can be difficult to accurately analyze and design the meshing zone.
  • Self-cleaning: The twin-screw extruder has a relatively high shear speed. Due to the opposing direction of the screw edges and grooves in the meshing area, the twin-screw extruder can scrape off any accumulated material adhering to the screw allowing for very good self-cleaning. Because the time the material is in the barrel is short, degradation and deterioration of material is reduced.
  • Applicable fields: Twin-screw extruders are widely used where physical and chemical modification of matrix resins are required, such as with filling, strengthening, toughening, and reactive extrusions. It can be used for glass fiber reinforced materials, fuel resistant materials (such as PA6, PA66, PET, PBT, PP, PC) flame retardant materials, high filler materials (such as PE, PP filled with 75% CaCO3) heat-sensitive materials (such as PVC, XLPE cable material), concentrated color additives (such as filling 50% toner) anti-static, cable, and pipe material, hot melt adhesive, etc.

What is the Difference Between the Working Principle of the Co-Rotating Twin-Screw Extruder and the Single-Screw Extruder?

The structure and function of the co-rotating twin-screw extruders are very similar to those of single-screw extruders, but there are some differences in the working principle.

  • Forced delivery: In co-rotating twin screws, the two screws move in opposite directions at the meshing point; one screw pulls the material into the meshing gap, and the other screw pushes the material out of the gap. The material is forcibly conveyed in the direction of the head along the screw.
  • Homogenization and mixing: The co-rotating twin-screws have a small gap at the meshing point, and because the speed of the screw rotation is relatively fast, the opposing meshing area has a high mixing effect; much better than that of single screw extruders and counter-rotating twin-screw extruders.
  • Self-cleaning: Due to the relatively high shear speed of the co-rotating twin-screws in the meshing area, they can scrape off any accumulated material adhering to the screw. This self-cleaning effect assures that the residence time of the material in the barrel is short, reducing material degradation and deterioration.
  • Plasticization of materials: The size of the screw gap has a great influence on the plasticization quality of the material. With a smaller the gap, there will be a greater shearing force, but less material will be able to pass through. With a larger gap, a greater the amount of material will pass through, but the shear force will be less.
  • Compression of materials: The co-rotating twin-screw extruder has many options for compressing and mixing materials, so the overall results are good.
  • Feeding method: The co-rotating twin-screw extruder requires uniform and quantitative feeding and assumes metered starvation feeding; feeding at a controlled rate below full capacity.
  • Exhaust: By using starvation feeding, a large-lead screw is used at the leading end of the conveying element so that the screw groove is not full and is in a zero-pressure state. This allows for the extrusion section of the screw to be set for consistent pressure.

Application of Twin-Screw Extruder:

The twin-screw extruder can be divided into counter-rotating twin-screw and co-rotating twin-screw according to the different rotation directions of the two screws.

Intermeshing co-rotating twin-screw extruders are widely used for the physical and chemical modification of matrix resins. The co-rotating twin-screw extruder can be used for the blending, dispersion, and mixing of various raw materials. The co-rotating twin-screws oppose each other at their shearing point so the mixing effect is much larger.

Powdered calcium carbonate, talc, and titanium dioxide are commonly used in the blending and filling of plastics. The filler may generally account for 30% to 60% of the batch. The powdery filler contains a lot of air, but the air will be dispersed during mixing in the kneading zone of the screw. As the material flows into the screw groove, the air will flow in the reverse direction, affecting the forward conveying of the powder, and finally reducing the extrusion volume.

Processing Advantages of Twin-Screw Extruders:

The design of the co-rotating twin-screw extruder allows for it to implement and combine screw elements and barrel elements of various geometric shapes according to different mixing requirements, making them very adaptable.

  • Hybrid performance: Since the two screws mesh with each other, various thread features can be added as required, such as reverse threads, meshing discs, toothed discs, etc., to fine-tune the mixing.
  • Processing flexibility: The co-rotating twin-screw extruder usually adopts metered starvation feeding, where the output depends on the feeding amount. Because the output is independent of the screw speed, the control variables can more flexibly handle multiple processing functions on one machine, such as melting, mixing, exhaust, reaction, etc.
  • Controllability of process parameters: Because the co-rotating twin-screw extruder has a narrower residence time distribution, better heat transfer, a more precisely controlled temperature curve, and a wider range of machinery options, it can offer better product quality stability.

What Is a Counter-Rotating Twin-Screw Extruder?

The input principle of the counter-rotating twin-screw extruder:

In a counter-rotating twin-screw extruder, the material is conveyed by positive displacement like that in a gear pump. The counter-rotating twin-screw extruder uses a slow rotation speed, and can operate at lower heat levels, reducing material decomposition. It does not require high thermal stability of the material so is especially suitable for the molding of heat-sensitive materials such as PVC.

Compared with the co-rotating twin-screw extruder, the counter-rotating twin-screw extruder has higher conveying efficiency, and better melting and exhaust performance, but the dispersion and mixing effect of materials is worse. The counter-rotating twin-screw extruder has the ability to establish a strong and stable head pressure, so it is more suitable for the direct extrusion of products. By using a counter-rotating twin-screw extruder instead of a single-screw extruder, you can eliminate the pre-plasticizing granulation process and directly extrude and process materials like PVC powder, thus reducing the cost of the product. Counter-rotating twin-screw extruders are mainly used to extrude PVC pipes, sheets, and pellets. Parallel, counter-rotating, twin-screw extruders have also been used in large-scale HDPE pipe production lines.

Counter-conical twin-screw extruders are traditionally used for the extrusion of polyvinyl chloride products, as these extruders are more energy efficient. There is little difference between co-rotating twin-screws and counter-rotating twin-screws as far as energy consumption, but it is more difficult for co-rotating twin-screw extruders to establish a stable head pressure.

Published by May 11, 2022 Source :

Further reading

You might also be interested in ...

Headline
Knowledge
The Distinction Between Yogurt and Probiotics
When you enjoy a sweet cup of yogurt every morning, do you believe you've provided your gut with a sufficient dose of good bacteria? Many people often equate yogurt with probiotics, thinking they are one and the same. 91Ƶever, from the perspective of their product nature and function, yogurt is more like a delicious "fermented beverage," while probiotics are "functional health supplements" designed to address specific health concerns. This article will break down the fundamental differences between the two, helping you become a smarter consumer.
Headline
Knowledge
The Birth of a Fabric: The Science and Craft of Textiles
Although fabric may seem like an ordinary item in our daily lives, its creation involves complex and highly precise processes. From cotton grown in the fields to synthetic fibers produced in factories, each raw material carries unique properties and purposes. Whether its the light, airy touch of a shirt or the high protective performance of medical textiles, behind it lies a production chain that spans agriculture, chemistry, and engineering.
Headline
Knowledge
Exploring Major Types of Plastics and Their Properties
Plastic materials are indispensable raw materials in modern manufacturing. Based on their chemical structures and processing characteristics, plastics are mainly classified into two categories: thermoplastics and thermosets. Understanding the properties of these two types aids in material selection and product design, thereby enhancing manufacturing efficiency and product performance.
Headline
Knowledge
Analysis of Green Plastic Manufacturing
With the rise of environmental awareness and the global push for sustainable development goals, traditional plastics face increasing environmental pressure due to their challenges in decomposition and recycling. In response, the manufacturing industry is actively developing and applying eco-friendly plastic materials to build green manufacturing systems. This article explores the types, characteristics, and industrial applications of eco-friendly plastics to assist industry transformation and upgrading.
Headline
Knowledge
Key Parameters for Manufacturing High-Quality Plastic Products
Plastic materials are widely used across various industries due to their lightweight, ease of molding, and versatile properties. 91Ƶever, different types of plastics exhibit distinct mechanical, thermal, chemical, and dimensional stability characteristics, which directly affect the final products performance and service life. Therefore, understanding the performance indicators of plastics is fundamental to designing and manufacturing high-quality plastic products.
Headline
Knowledge
Dry Cutting vs. Wet Cutting: The Balance of Energy Saving, Cost, and Quality
In CNC machining, the choice of cooling method is not simply a technical preference but a multi-faceted trade-off involving cost control, machining quality, tool life, and production line stability. Both dry cutting and wet cutting have their advantages and limitations. To stand out in the fiercely competitive market, companies must shift from pursuing the theoretically optimal to the contextually optimal solution.
Headline
Knowledge
The Unsung Heroes of Cutting Tool Coatings: Performance Differences from TiN to DLC
In CNC machining, cutting tool coatings are a critical yet invisible factor in boosting production efficiency and reducing costs. Although coating thickness is only a few microns, it significantly enhances tool hardness and wear resistance, optimizes heat dissipation, and improves cutting speed and machining accuracy. From classic Titanium Nitride (TiN) to advanced Diamond-Like Carbon (DLC) coatings, different coating materials not only offer varying hardness and heat resistance but also affect tool lifespan and machining adaptability.
Headline
Knowledge
Comprehensive Overview of Plastic Processing Methods: Mastering Key Technologies and Applications
Plastic products play an indispensable role in modern manufacturing, and various plastic processing techniques are crucial for achieving product diversity and efficient production. The following introduces five common and important plastic processing methods, helping readers gain a thorough understanding of their principles, features, and application scopes.
Headline
Knowledge
Fabric Knowledge Base: A Guide to Fiber Applications, From Beginner to Expert Selection
Textile fiber is the fundamental element that determines fabric performance and product suitability. Whether you are a designer, manufacturer, or consumer, understanding the unique characteristics of different fibers and their suitable applications is crucial for precise material selection and informed purchasing. This article will systematically introduce the applications of major natural and synthetic fibers and explain how blending them can overcome the limitations of single fibers, providing versatile functional solutions and helping you build a comprehensive knowledge base of textile applications.
Headline
Knowledge
What is Liquid Injection Molding?
Liquid Injection Molding (LIM) is a manufacturing process that involves injecting liquid silicone rubber (LSR) into precision molds, followed by heating and curing to form high-precision, complex plastic components. Compared to traditional thermoplastic injection molding, LIM offers superior accuracy and the capability to produce more intricate shapes, making it especially suitable for applications demanding high performance and reliability.
Headline
Knowledge
Precision Mold Development and Manufacturing: The Core Technology of Modern Plastic Production
Precision molds form the foundation for the quality and efficiency of plastic part molding. In todays highly competitive manufacturing environment, the design and fabrication of molds directly impact a products functional performance and market competitiveness. Excellent mold development requires not only precise engineering design but also the integration of advanced machining technologies and rigorous quality control to achieve efficient and stable mass production.
Headline
Knowledge
The Magical Journey of Milk Tea
Pouring smooth, rich milk into robust black tea with a unique aroma, then stirring it all together, gets you a cup of milk tea. But do you really know what defines milk tea, and how it differs from the milk tea we enjoy today?
Agree