91ÊÓÆµ¹ÙÍø

What is a Rotational Molding Machine and 91ÊÓÆµ¹ÙÍø Does it Work?
Knowledge

What is a Rotational Molding Machine and 91ÊÓÆµ¹ÙÍø Does it Work?

Rotational molding of a rotational molding machine is a process method for forming hollow plastic products, also known as rotational molding, rotational molding, or rotary molding.
Published: Dec 22, 2022
What is a Rotational Molding Machine and 91ÊÓÆµ¹ÙÍø Does it Work?

What is a Rotational Molding Machine?

Rotational molding does not involve the use of a plasticizing unit. Rather than injecting or extruding molten material under pressure, the process uses materials such as powdered polyethylene that are cast within a hollow tool. Usually made of aluminum or steel, the tool is opened and closed manually to fill the powder and remove the finished part.

Excellent high-temperature performance and oxidation stability, prevent grease from deteriorating at high temperatures, and ensure long-term normal operation of lubricating parts at high temperatures, excellent adhesion performance, good mechanical stability, and colloidal stability, ensure that the lubricating parts will not be lost. Good lubricity, protect bearings and reduce wear. Excellent comprehensive performance ensures a long service life of the bearing.

Rotational molding is a labor-intensive and relatively slow process, so multiple tools are often cycled through the various stages. To achieve this, the machine can have up to 4 independent arms. Shuttles move the tool through the station in a linear fashion, so tend to have only one or two arms, but oscillating and carousel designs can be more complex. According to the modified performance characteristics of lubrication technology monograph to guide the use and maintenance of rotational molding machine equipment.

Rotational molding is usually used to produce hollow structural products. This molding process is suitable for thermoplastics and sometimes for some thermosetting plastics. This method is to measure the powdery or pasty resin, put it in the roto-molding mold, heat the mold, and roll and rotate it so that the resin in the mold is melted and plasticized to a flow state. And evenly filled with all parts of the mold cavity, after cooling and hardening, the finished product can be obtained after de-molding.

Rotational Molding Technology and Development:

There are many kinds of processing and molding processes for plastics and their composite materials. In addition to our common extrusion, injection, blow molding, and other processes, rotational molding is a processing method for plastic products. Since the roto-molding process came out in the 1930s, after more than 60 years of development, its equipment and technology have become more and more perfect. From small children's toys to common automotive plastic parts to huge engineering plastic products, especially super-large, and non-standard special-shaped hollow plastic products, due to the limitations of other plastic processing technologies, they can only rely on the rotational molding. Traditionally, rotational molding is applied to thermoplastic materials. In recent years, rotational molding of thermosetting materials such as cross-linkable polyethylene has also developed rapidly. Because roto molding does not require high injection pressure, high shear rate polymer metering, molds, and machines are less expensive and last longer. The rotational molding process has become an important branch of the plastic molding process.

Rotational molding is also known as a rotational casting, rotary molding, etc. The roto-molding process is to add plastic raw materials into the mold first, and then the mold is continuously rotated along two vertical axes and heated so that the plastic raw materials in the mold are gradually and evenly coated and melted, and adhered to the mold under the action of gravity and heat energy. The entire surface of the cavity is molded into the desired shape, and then the product is obtained after cooling, shaping, and de-molding.

Rotational molding relies on the centrifugal force of high-speed rotation of the mold so that the raw materials are distributed on the inner wall of the mold, which is normal pressure molding. Therefore, the residual stress of the product is low, and there will be no defects such as warping, and the mold can also simplify the process, thereby significantly reducing manufacturing costs, and manufacturing medium-sized, large-scale, or super-large fully enclosed and semi-enclosed hollow seamless containers.

The Production Process of Rotational Molding Technology:

The basic process of roto-molding is simple, powder or liquid polymer is placed in a mold, heated while rotating around two perpendicular axes, and then cooled. At the beginning of the heating stage, if powdered materials are used, a porous layer will be formed on the surface of the mold, and then gradually melted with the circulation process, and a homogeneous layer of uniform thickness will be formed. If liquid materials are used, then flows and coats mold surfaces, and stops flowing completely when the gel point is reached. The mold is then transferred to the cooling station, where it is cooled by forced air or sprayed with water, and then placed in the work area, where the mold is opened and the finished part is removed before the next cycle.

The basic process of a roto-molding machine is:
  • The inside of the tool is sprayed with a release agent to allow for easier removal of the finished part.
  • Put the required amount of powder into the tool and close it.
  • The tool is attached to the arm of the roto-former, and the tool is then rotated by biaxial in the oven. This melts and spreads the material evenly over the inner surface of the tool.
  • Move the machine's arm to the cooling station, where it continues to turn the mold through directed air or water jets.
  • After solidification, the tool is opened and the part is de-molded.
The basic process of rotational molding:
  • Feeding: Put the weighed plastic into the mold in the form of liquid or powder.
  • Heating: The roto-molding machine rotates the mold in two directions and joins the heating furnace to heat the mold, and all the plastic adheres and sinters to the inner surface of the cavity.
  • Cooling: With the continuous rotation of the mold, the mold is simultaneously transferred out of the heating furnace and enters the cooling chamber, where the rotomolded plastic is cooled and formed.
  • De-molding: The rotational molding machine turns to the mold opening position, the mold stops rotating, and the mold is opened, and taken out.

Use and Application of Rotational Molding Machine:

It is suitable for the lubrication of various bearings, gears, chains, and other transmission mechanical parts under high-temperature environments. It is suitable for the lubrication of motors, bearings, and gears in metallurgy, mining, oil fields, machinery, transportation, and other industries under severe conditions such as high temperature, heavy load, and humidity. Especially suitable for high-temperature bearings, such as auxiliary boiler rotary burner bearings in large chemical plants, sleeve bearings for plastic extruders, high-temperature bearings for cracking furnace-induced draft fans, regeneration gas compressors, etc., stretching tenters, hot melt fans, lubrication of rolling bearings and sliding bearings of various machinery with high speed working at high temperatures such as heat setting drying room, a baking machine, and high-temperature dyeing vat.

Features of the Rotational Molding Process:

  • The edge strength of the roto-molding product is good, and the roto-molding can realize the thickness of the edge of the product exceeding 5 mm, and completely solve the problem of the thin edge of the hollow product.
  • Rotational molding can place various inserts.
  • The shape of rotational molding products can be very complex, and the thickness exceeds 5 mm.
  • Rotational molding can produce fully enclosed products.
  • Roto-molding products can be filled with foam materials to achieve heat preservation.
  • There is no need to adjust the mold, and the wall thickness of the rotationally molded product can be adjusted freely.
  • The product is hollow and seamless, but the wall thickness can be adjusted to make the product have high strength.
  • Products of various colors can be produced and can be used for anti-ultraviolet and anti-aging treatment.
Disadvantages of rotational molding:
  • Because the material has to be ground and pulverized the cost increases.
  • The processing cycle is long, so it is not suitable for mass production.
  • There are fewer types of plastics available.
  • Opening and closing the mold is relatively heavy physical labor.

Compared with other mold processes, rotational molding provides more design space. Under the correct design concept, several parts can be combined into a complete mold, allowing the container to be integrally formed, reducing assembly costs and leakage and seepage problems caused by welding.

Published by Dec 22, 2022 Source :

Further reading

You might also be interested in ...

Headline
Knowledge
The Birth of a Fabric: The Science and Craft of Textiles
Although fabric may seem like an ordinary item in our daily lives, its creation involves complex and highly precise processes. From cotton grown in the fields to synthetic fibers produced in factories, each raw material carries unique properties and purposes. Whether it¡¯s the light, airy touch of a shirt or the high protective performance of medical textiles, behind it lies a production chain that spans agriculture, chemistry, and engineering.
Headline
Knowledge
Exploring Major Types of Plastics and Their Properties
Plastic materials are indispensable raw materials in modern manufacturing. Based on their chemical structures and processing characteristics, plastics are mainly classified into two categories: thermoplastics and thermosets. Understanding the properties of these two types aids in material selection and product design, thereby enhancing manufacturing efficiency and product performance.
Headline
Knowledge
Analysis of Green Plastic Manufacturing
With the rise of environmental awareness and the global push for sustainable development goals, traditional plastics face increasing environmental pressure due to their challenges in decomposition and recycling. In response, the manufacturing industry is actively developing and applying eco-friendly plastic materials to build green manufacturing systems. This article explores the types, characteristics, and industrial applications of eco-friendly plastics to assist industry transformation and upgrading.
Headline
Knowledge
Key Parameters for Manufacturing High-Quality Plastic Products
Plastic materials are widely used across various industries due to their lightweight, ease of molding, and versatile properties. 91ÊÓÆµ¹ÙÍøever, different types of plastics exhibit distinct mechanical, thermal, chemical, and dimensional stability characteristics, which directly affect the final product¡¯s performance and service life. Therefore, understanding the performance indicators of plastics is fundamental to designing and manufacturing high-quality plastic products.
Headline
Knowledge
Dry Cutting vs. Wet Cutting: The Balance of Energy Saving, Cost, and Quality
In CNC machining, the choice of cooling method is not simply a technical preference but a multi-faceted trade-off involving cost control, machining quality, tool life, and production line stability. Both dry cutting and wet cutting have their advantages and limitations. To stand out in the fiercely competitive market, companies must shift from pursuing the ¡°theoretically optimal¡± to the ¡°contextually optimal¡± solution.
Headline
Knowledge
The Unsung Heroes of Cutting Tool Coatings: Performance Differences from TiN to DLC
In CNC machining, cutting tool coatings are a critical yet ¡°invisible¡± factor in boosting production efficiency and reducing costs. Although coating thickness is only a few microns, it significantly enhances tool hardness and wear resistance, optimizes heat dissipation, and improves cutting speed and machining accuracy. From classic Titanium Nitride (TiN) to advanced Diamond-Like Carbon (DLC) coatings, different coating materials not only offer varying hardness and heat resistance but also affect tool lifespan and machining adaptability.
Headline
Knowledge
Comprehensive Overview of Plastic Processing Methods: Mastering Key Technologies and Applications
Plastic products play an indispensable role in modern manufacturing, and various plastic processing techniques are crucial for achieving product diversity and efficient production. The following introduces five common and important plastic processing methods, helping readers gain a thorough understanding of their principles, features, and application scopes.
Headline
Knowledge
Fabric Knowledge Base: A Guide to Fiber Applications, From Beginner to Expert Selection
Textile fiber is the fundamental element that determines fabric performance and product suitability. Whether you are a designer, manufacturer, or consumer, understanding the unique characteristics of different fibers and their suitable applications is crucial for precise material selection and informed purchasing. This article will systematically introduce the applications of major natural and synthetic fibers and explain how blending them can overcome the limitations of single fibers, providing versatile functional solutions and helping you build a comprehensive knowledge base of textile applications.
Headline
Knowledge
What is Liquid Injection Molding?
Liquid Injection Molding (LIM) is a manufacturing process that involves injecting liquid silicone rubber (LSR) into precision molds, followed by heating and curing to form high-precision, complex plastic components. Compared to traditional thermoplastic injection molding, LIM offers superior accuracy and the capability to produce more intricate shapes, making it especially suitable for applications demanding high performance and reliability.
Headline
Knowledge
Precision Mold Development and Manufacturing: The Core Technology of Modern Plastic Production
Precision molds form the foundation for the quality and efficiency of plastic part molding. In today¡¯s highly competitive manufacturing environment, the design and fabrication of molds directly impact a product¡¯s functional performance and market competitiveness. Excellent mold development requires not only precise engineering design but also the integration of advanced machining technologies and rigorous quality control to achieve efficient and stable mass production.
Headline
Knowledge
The Magical Journey of Milk Tea
Pouring smooth, rich milk into robust black tea with a unique aroma, then stirring it all together, gets you a cup of milk tea. But do you really know what defines milk tea, and how it differs from the milk tea we enjoy today?
Headline
Knowledge
The Connection Between Textiles and Biomimicry: A Fabric Revolution Inspired by Nature
Lotus leaves after rain shed water droplets without a trace; delicate spider silk is stronger than steel. These are not coincidences but exquisite designs evolved by nature over millions of years. The textile industry is learning from this great designer¡ªnature itself¡ªthrough biomimicry, transforming natural wisdom into fabrics that perform better and are more eco-friendly.
Agree