91ÊÓÆµ¹ÙÍø

What Are the Modern Robotic Computing Architectures?
Knowledge

What Are the Modern Robotic Computing Architectures?

Robotic behavior is often built as a computational graph, with data flowing from sensors to computational technology, all the way to actuators and back. To gain additional performance capabilities, robotic computing platforms must efficiently map these graph-like structures to CPUs, as well as to specialized hardware including FPGAs and GPUs.
Published: Mar 17, 2022
What Are the Modern Robotic Computing Architectures?

Traditional software development for robotic systems has primarily focused on programming the central processing unit (CPU). 91ÊÓÆµ¹ÙÍøever, these robotic systems often exhibit processing inefficiencies, high power consumption, and safety issues due to the inherent architectural constraints and limitations of CPUs.

What is a Robot Computing Platform?

Robotic behavior is often built as a computational graph, with data flowing from sensors to computational technology, all the way to actuators and back. To gain additional performance capabilities, robotic computing platforms must efficiently map these graph-like structures to CPUs, as well as to specialized hardware including FPGAs and GPUs.

Robots are complex mechatronic devices, which comprehensively use the latest research results of machinery and precision machinery, microelectronics and computers, automatic control and driving, sensors and information processing, and artificial intelligence.

To integrate these achievements and truly form the ability of cognition, feeling, and action, so that the robot can understand and respond to the real world and accurately complete the operation tasks, the computing platform it carries needs to meet various requirements:

  • Perception ability: The platform has rich I/O interfaces, supports USB3, UART, I2C, and other I/O protocols to receive various sensor data. 360-degree omnidirectional scanning and ranging detection of the surrounding environment, and then obtain the contour map of the surrounding environment.
  • Control ability: It can control various moving parts, such as chassis, arms, fingers, and head, to complete actions in multiple dimensions, and it has real-time and safety guarantees.
  • Computing power: It is necessary to cope with the processing overhead of a large amount of data, as well as meet the huge computing needs of various intelligent algorithms.

Advantages and disadvantages of various computing resources?

Robotics and AI platforms incorporate a variety of computing resources, including CPUs, digital signal processors (DSPs), graphics processing units (GPUs), field-programmable gate arrays (FPGAs), and application-specific integrated circuits (ASICs). They allow roboticists to build flexible computing architectures for robots, requiring the right tools for each task to maximize their performance.

  1. Scalar Processor (CPU):
    Scalar processing elements are very efficient in complex algorithms with multiple decision trees and extensive libraries. But performance scaling is limited. Although CPUs are very flexible, their underlying hardware is fixed. Most CPUs are still based on the Von-Neumann architecture (stored-program computer), where data is brought from memory to the processor, manipulated, and then written back to memory. Each CPU operates sequentially, one instruction at a time, and the architecture is centered around an arithmetic logic unit (ALU), which requires moving data in and out of each operation. In robotics architectures, scalar processors play a central role. Coordinating the flow of information across sensing, actuation, and cognition by using the CPU is fundamental to robotic systems. In addition, Robot Operating System (ROS), a widely adopted software framework for robot application development, is designed in a CPU-centric manner.
  2. Vector processors (DSP, GPU):
    Computational Architecture Vector processing elements (DSP, GPU) are more efficient on a narrower set of parallelizable computing capabilities compared to CPUs. The downside is an inflexible memory hierarchy, which creates latency and loss of efficiency. The GPU performs the same few tasks over and over again, best for professional and functional performance. Vector processors overcome the shortcomings of CPUs in robotics and have the ability to process large amounts of data.
  3. Programmable Logic (FPGA):
    Programmable logic can be precisely tailored to specific computing functions for latency-critical real-time applications. 91ÊÓÆµ¹ÙÍøever, these advantages come at the cost of programming complexity. Also, reconfiguration and reprogramming of FPGA¡¯s require longer compile times compared to the programing of scalar and vector processors. Unlike general-purpose memory structures, FPGAs are flexible and adaptable, tailorable to desired tasks,. In robotics architectures, FPGAs enable the creation of run-time reconfigurable robotic hardware via software. Software-defined hardware for robots is good at dataflow computations because statements are executed once all operands are available. This makes FPGAs useful for connecting sensors, actuators, and processing networks. In addition, FPGAs can create custom hardware-accelerated cores with the flexibility to be an alternative to vector processors for data processing tasks.
  4. Application-Specific Integrated Circuits (ASICs):
    The special fixed architecture of the ASIC provides higher performance and power efficiency, as well as the best price for high volume production. But ASICs take many years to develop and no changes are allowed. Therefore, while ASICs will play a role in some future robotic systems, the use of ASICs in robotics architecture is still limited.
  5. Network of Networks:
    Robots are inherently deterministic machines. They are a network of networks where sensors capture data, pass it to computing technology, then to actuators, and back again in a deterministic way. These networks can be understood as the nervous system of the robot. Like the human nervous system, real-time information is passed through all networks to control the coherent behavior of the robot. Von-Neumann-based scalar and vector processor architectures excel at control flow but struggle to guarantee determinism. This is where FPGAs and ASICs come into play as key enabling technologies for robotic systems.
  6. Robot Computing Architecture:
    Consider robotic systems that use robotic operating systems (ROS), which have become common in robotics development. Using ROS, robotic processes are designed as nodes in a computational graph. Robotic computing platforms must be able to efficiently map these graph-like structures onto silicon. The ROS computational graph should seamlessly run across the computational substrate, and data must flow from the programmable logic (FPGA) to the CPU, from the CPU to the vector processor, and all the way back. Robot chips should map not only the ROS computational graph to CPUs, but also FPGAs, GPUs, and other computing technologies for additional performance.?
  7. Best computing resources:
    In contrast to traditional, CPU-centric robotics programming models, the availability of additional computing platforms provides engineers with a high degree of architectural flexibility. Roboticists can take advantage of the properties of various computing platforms: determinism, power consumption, throughput, etc., by selecting, mixing and matching the right computing resources as needed.
Published by Mar 17, 2022 Source :

Further reading

You might also be interested in ...

Headline
Knowledge
Exploring Major Types of Plastics and Their Properties
Plastic materials are indispensable raw materials in modern manufacturing. Based on their chemical structures and processing characteristics, plastics are mainly classified into two categories: thermoplastics and thermosets. Understanding the properties of these two types aids in material selection and product design, thereby enhancing manufacturing efficiency and product performance.
Headline
Knowledge
Analysis of Green Plastic Manufacturing
With the rise of environmental awareness and the global push for sustainable development goals, traditional plastics face increasing environmental pressure due to their challenges in decomposition and recycling. In response, the manufacturing industry is actively developing and applying eco-friendly plastic materials to build green manufacturing systems. This article explores the types, characteristics, and industrial applications of eco-friendly plastics to assist industry transformation and upgrading.
Headline
Knowledge
Key Parameters for Manufacturing High-Quality Plastic Products
Plastic materials are widely used across various industries due to their lightweight, ease of molding, and versatile properties. 91ÊÓÆµ¹ÙÍøever, different types of plastics exhibit distinct mechanical, thermal, chemical, and dimensional stability characteristics, which directly affect the final product¡¯s performance and service life. Therefore, understanding the performance indicators of plastics is fundamental to designing and manufacturing high-quality plastic products.
Headline
Knowledge
Dry Cutting vs. Wet Cutting: The Balance of Energy Saving, Cost, and Quality
In CNC machining, the choice of cooling method is not simply a technical preference but a multi-faceted trade-off involving cost control, machining quality, tool life, and production line stability. Both dry cutting and wet cutting have their advantages and limitations. To stand out in the fiercely competitive market, companies must shift from pursuing the ¡°theoretically optimal¡± to the ¡°contextually optimal¡± solution.
Headline
Knowledge
The Unsung Heroes of Cutting Tool Coatings: Performance Differences from TiN to DLC
In CNC machining, cutting tool coatings are a critical yet ¡°invisible¡± factor in boosting production efficiency and reducing costs. Although coating thickness is only a few microns, it significantly enhances tool hardness and wear resistance, optimizes heat dissipation, and improves cutting speed and machining accuracy. From classic Titanium Nitride (TiN) to advanced Diamond-Like Carbon (DLC) coatings, different coating materials not only offer varying hardness and heat resistance but also affect tool lifespan and machining adaptability.
Headline
Knowledge
Comprehensive Overview of Plastic Processing Methods: Mastering Key Technologies and Applications
Plastic products play an indispensable role in modern manufacturing, and various plastic processing techniques are crucial for achieving product diversity and efficient production. The following introduces five common and important plastic processing methods, helping readers gain a thorough understanding of their principles, features, and application scopes.
Headline
Knowledge
Fabric Knowledge Base: A Guide to Fiber Applications, From Beginner to Expert Selection
Textile fiber is the fundamental element that determines fabric performance and product suitability. Whether you are a designer, manufacturer, or consumer, understanding the unique characteristics of different fibers and their suitable applications is crucial for precise material selection and informed purchasing. This article will systematically introduce the applications of major natural and synthetic fibers and explain how blending them can overcome the limitations of single fibers, providing versatile functional solutions and helping you build a comprehensive knowledge base of textile applications.
Headline
Knowledge
What is Liquid Injection Molding?
Liquid Injection Molding (LIM) is a manufacturing process that involves injecting liquid silicone rubber (LSR) into precision molds, followed by heating and curing to form high-precision, complex plastic components. Compared to traditional thermoplastic injection molding, LIM offers superior accuracy and the capability to produce more intricate shapes, making it especially suitable for applications demanding high performance and reliability.
Headline
Knowledge
Precision Mold Development and Manufacturing: The Core Technology of Modern Plastic Production
Precision molds form the foundation for the quality and efficiency of plastic part molding. In today¡¯s highly competitive manufacturing environment, the design and fabrication of molds directly impact a product¡¯s functional performance and market competitiveness. Excellent mold development requires not only precise engineering design but also the integration of advanced machining technologies and rigorous quality control to achieve efficient and stable mass production.
Headline
Knowledge
The Magical Journey of Milk Tea
Pouring smooth, rich milk into robust black tea with a unique aroma, then stirring it all together, gets you a cup of milk tea. But do you really know what defines milk tea, and how it differs from the milk tea we enjoy today?
Headline
Knowledge
The Connection Between Textiles and Biomimicry: A Fabric Revolution Inspired by Nature
Lotus leaves after rain shed water droplets without a trace; delicate spider silk is stronger than steel. These are not coincidences but exquisite designs evolved by nature over millions of years. The textile industry is learning from this great designer¡ªnature itself¡ªthrough biomimicry, transforming natural wisdom into fabrics that perform better and are more eco-friendly.
Headline
Knowledge
What Is a CNC Machine Tool? Unveiling the Secret Behind Modern Factories¡¯ High Efficiency
CNC (Computer Numerical Control) machine tools are automated devices that control machining processes through computer programming. Known for their high efficiency, precision, and stability, they are widely used across industries such as aerospace, automotive, mold making, electronics, medical, and energy. With the rise of Industry 4.0 and smart manufacturing, CNC technology continues to evolve toward multi-axis machining, intelligent control, remote monitoring, and integrated processes. This widespread adoption not only enhances manufacturing performance but also reshapes the workforce, shifting traditional manual skills toward digital operation and system integration¡ªbringing greater production flexibility and competitiveness to businesses.
Agree