91ÊÓÆµ¹ÙÍø

What Constitutes Contemporary Architectural Frameworks for Robotic Computing?
Knowledge

What Constitutes Contemporary Architectural Frameworks for Robotic Computing?

The behavior of robots is frequently modeled as a computational graph, wherein data flows from sensors to computational technology, extending to actuators and then looping back. To enhance performance capabilities, robotic computing platforms need to adeptly map these graph-like structures to CPUs and specialized hardware, such as FPGAs and GPUs.
Published: Dec 07, 2023
What Constitutes Contemporary Architectural Frameworks for Robotic Computing?

Contemporary Robotic Computing Architectures and Resources

Traditional approaches to robotic software development have primarily focused on programming the central processing unit (CPU). 91ÊÓÆµ¹ÙÍøever, inherent constraints in CPU architectures often lead to processing inefficiencies, high power consumption, and safety concerns. As a response, modern robotic computing platforms explore diverse resources to optimize performance and address the multifaceted requirements of robotic systems.

Robot Computing Platforms:

Robotic behavior is conceptualized as a computational graph, with data flowing from sensors to computational technology, and then to actuators. To enhance performance, these graph-like structures must be efficiently mapped not only to CPUs but also to specialized hardware, including FPGAs and GPUs.

Complexity of Robots:

Robots, as complex mechatronic devices, integrate advancements in machinery, precision machinery, microelectronics, computers, automatic control, sensors, information processing, and artificial intelligence. Achieving cognitive, sensory, and action capabilities necessitates a computing platform that fulfills various requirements.

Requirements for Robot Computing Platforms

Perception Ability: Rich I/O interfaces supporting various sensor data inputs, including USB3, UART, I2C. Comprehensive environmental scanning for 360-degree omnidirectional awareness.

Control Ability: Real-time and safe control of moving parts such as chassis, arms, fingers, and head. Multidimensional action execution.

Computing Power: Capable of handling significant data processing overhead and supporting various intelligent algorithms.

Advantages and Disadvantages of Computing Resources

Scalar Processor (CPU): Efficient for complex algorithms but limited in performance scaling. Flexibility is compromised by fixed hardware.

Vector Processors (DSP, GPU): More efficient for parallelizable computing tasks. Offers high performance but has an inflexible memory hierarchy.

Programmable Logic (FPGA): Precisely tailored for latency-critical real-time applications. Provides flexibility but requires complex programming.

Application-Specific Integrated Circuits (ASICs): High performance and power efficiency but requires significant development time.

Network of Networks:

Robots, viewed as deterministic machines, function as a network of networks. Deterministic passing of real-time information through interconnected networks ensures coherent robot behavior. FPGAs and ASICs play a crucial role in guaranteeing determinism, which traditional CPU architectures struggle to provide.

Robot Computing Architecture:

Robotic systems utilizing ROS are designed as nodes in a computational graph. Efficient mapping of this graph-like structure onto silicon involves seamlessly running the ROS computational graph across various computing substrates, including CPUs, FPGAs, GPUs, and more.

Best Computing Resources:

Contrary to CPU-centric programming models, modern roboticists have the flexibility to leverage diverse computing platforms based on determinism, power consumption, throughput, and other factors. The selection and combination of CPU, FPGA, GPU, and other resources offer engineers a high degree of architectural flexibility in designing efficient robotic systems.

Published by Dec 07, 2023 Source:

Further reading

You might also be interested in ...

Headline
Knowledge
Exploring Major Types of Plastics and Their Properties
Plastic materials are indispensable raw materials in modern manufacturing. Based on their chemical structures and processing characteristics, plastics are mainly classified into two categories: thermoplastics and thermosets. Understanding the properties of these two types aids in material selection and product design, thereby enhancing manufacturing efficiency and product performance.
Headline
Knowledge
Analysis of Green Plastic Manufacturing
With the rise of environmental awareness and the global push for sustainable development goals, traditional plastics face increasing environmental pressure due to their challenges in decomposition and recycling. In response, the manufacturing industry is actively developing and applying eco-friendly plastic materials to build green manufacturing systems. This article explores the types, characteristics, and industrial applications of eco-friendly plastics to assist industry transformation and upgrading.
Headline
Knowledge
Key Parameters for Manufacturing High-Quality Plastic Products
Plastic materials are widely used across various industries due to their lightweight, ease of molding, and versatile properties. 91ÊÓÆµ¹ÙÍøever, different types of plastics exhibit distinct mechanical, thermal, chemical, and dimensional stability characteristics, which directly affect the final product¡¯s performance and service life. Therefore, understanding the performance indicators of plastics is fundamental to designing and manufacturing high-quality plastic products.
Headline
Knowledge
Dry Cutting vs. Wet Cutting: The Balance of Energy Saving, Cost, and Quality
In CNC machining, the choice of cooling method is not simply a technical preference but a multi-faceted trade-off involving cost control, machining quality, tool life, and production line stability. Both dry cutting and wet cutting have their advantages and limitations. To stand out in the fiercely competitive market, companies must shift from pursuing the ¡°theoretically optimal¡± to the ¡°contextually optimal¡± solution.
Headline
Knowledge
The Unsung Heroes of Cutting Tool Coatings: Performance Differences from TiN to DLC
In CNC machining, cutting tool coatings are a critical yet ¡°invisible¡± factor in boosting production efficiency and reducing costs. Although coating thickness is only a few microns, it significantly enhances tool hardness and wear resistance, optimizes heat dissipation, and improves cutting speed and machining accuracy. From classic Titanium Nitride (TiN) to advanced Diamond-Like Carbon (DLC) coatings, different coating materials not only offer varying hardness and heat resistance but also affect tool lifespan and machining adaptability.
Headline
Knowledge
Comprehensive Overview of Plastic Processing Methods: Mastering Key Technologies and Applications
Plastic products play an indispensable role in modern manufacturing, and various plastic processing techniques are crucial for achieving product diversity and efficient production. The following introduces five common and important plastic processing methods, helping readers gain a thorough understanding of their principles, features, and application scopes.
Headline
Knowledge
Fabric Knowledge Base: A Guide to Fiber Applications, From Beginner to Expert Selection
Textile fiber is the fundamental element that determines fabric performance and product suitability. Whether you are a designer, manufacturer, or consumer, understanding the unique characteristics of different fibers and their suitable applications is crucial for precise material selection and informed purchasing. This article will systematically introduce the applications of major natural and synthetic fibers and explain how blending them can overcome the limitations of single fibers, providing versatile functional solutions and helping you build a comprehensive knowledge base of textile applications.
Headline
Knowledge
What is Liquid Injection Molding?
Liquid Injection Molding (LIM) is a manufacturing process that involves injecting liquid silicone rubber (LSR) into precision molds, followed by heating and curing to form high-precision, complex plastic components. Compared to traditional thermoplastic injection molding, LIM offers superior accuracy and the capability to produce more intricate shapes, making it especially suitable for applications demanding high performance and reliability.
Headline
Knowledge
Precision Mold Development and Manufacturing: The Core Technology of Modern Plastic Production
Precision molds form the foundation for the quality and efficiency of plastic part molding. In today¡¯s highly competitive manufacturing environment, the design and fabrication of molds directly impact a product¡¯s functional performance and market competitiveness. Excellent mold development requires not only precise engineering design but also the integration of advanced machining technologies and rigorous quality control to achieve efficient and stable mass production.
Headline
Knowledge
The Magical Journey of Milk Tea
Pouring smooth, rich milk into robust black tea with a unique aroma, then stirring it all together, gets you a cup of milk tea. But do you really know what defines milk tea, and how it differs from the milk tea we enjoy today?
Headline
Knowledge
The Connection Between Textiles and Biomimicry: A Fabric Revolution Inspired by Nature
Lotus leaves after rain shed water droplets without a trace; delicate spider silk is stronger than steel. These are not coincidences but exquisite designs evolved by nature over millions of years. The textile industry is learning from this great designer¡ªnature itself¡ªthrough biomimicry, transforming natural wisdom into fabrics that perform better and are more eco-friendly.
Headline
Knowledge
What Is a CNC Machine Tool? Unveiling the Secret Behind Modern Factories¡¯ High Efficiency
CNC (Computer Numerical Control) machine tools are automated devices that control machining processes through computer programming. Known for their high efficiency, precision, and stability, they are widely used across industries such as aerospace, automotive, mold making, electronics, medical, and energy. With the rise of Industry 4.0 and smart manufacturing, CNC technology continues to evolve toward multi-axis machining, intelligent control, remote monitoring, and integrated processes. This widespread adoption not only enhances manufacturing performance but also reshapes the workforce, shifting traditional manual skills toward digital operation and system integration¡ªbringing greater production flexibility and competitiveness to businesses.
Agree