91ÊÓÆµ¹ÙÍø

The Future of Electrification Comes from the Development of the Wireless Power Industry
Trend

The Future of Electrification Comes from the Development of the Wireless Power Industry

The wireless power industry is expected to grow exponentially. Wireless power has a major impact on almost all fields because it enables the Internet of Things to achieve and develop faster.
Published: Dec 17, 2021
The Future of Electrification Comes from the Development of the Wireless Power Industry

What is wireless power transmission technology?

Wireless power transmission, also known as non-contact power transmission, refers to the conversion of electrical energy into other forms of relay energy (such as electromagnetic field energy, lasers, microwaves, and mechanical waves.

Wireless power transmission is the direct transmission of electrical energy (electricity) from the power supply equipment to the electrical device without wires or conductors. It can be used to charge a battery for electrical storage or for direct operation. Wireless transmission can usually use electromagnetic field coupling effects, including Inductive Coupling and Resonant Coupling. Broadly speaking, all radio wave propagation is a kind of energy transmission. The difference lies in the higher efficiency and power of wireless transmission.

The wireless transmitter can safely supply power to the receiver embedded in almost any device, similar to the way Wi-Fi sends data. Devices such as IoT sensors, temporary trackers, smartphones, game controllers, smartwatches, etc. can be equipped with receivers and send signals to the transmitter which can safely receive power at a distance.

What is the transmission principle of wireless power?

  1. Contact charging technology:
    Using the principle of electromagnetic induction, this non-contact charging technology is increasingly widely used in many portable terminals. In this type, two coils are placed in adjacent positions, and when current flows in one coil, the generated magnetic flux becomes a medium, causing an electromotive force to also be generated in the other coil.
  2. Microwave energy transmission technology:
    Microwave energy transmission applies the principle that electromagnetic wave energy can be sent and received through an antenna. Microwave energy transmission is to focus the microwaves and emit them in a controlled direction. At the receiving end, the received microwave energy is converted into DC power through a rectenna (rectifying antenna).
  3. Resonance technology:
    The resonance method using electromagnetic fields is widely used in the electronic field. 91ÊÓÆµ¹ÙÍøever, the power supply technology does not use electromagnetic waves or currents, but only uses electric fields or magnetic fields.
Advantages of wireless power, Removing regulatory obstacles:

Development trends impacting the future of wireless power include progress made in supervision of the industry. As a result, many wireless power applications are already improving efficiency, safety, and convenience.

Wireless power supply technology can transmit power through the air over long distances without sight, clearing key regulatory obstacles and paving the way for a wide range of consumer and industrial applications. In the United States, the FCC has issued several certifications for a patented technology that can provide wireless power safely and effectively. The RF-based non-line-of-sight wireless power long-distance technology can transmit power without limitation.

Application of wireless power supply:

  • 91ÊÓÆµ¹ÙÍø will wireless power change logistics?
    With regulatory approval, the wireless power industry has begun to provide enterprises with new choices. For example, the tracking system of truck trailers uses wireless power supply technology to effectively help the world's largest retailer save money and improve safety in busy distribution centers.
    There are endless applications for transportation and logistics, retail, and almost any enterprise or consumer use case. Sensors that can track the location of pallets or containers over long distances without manual intervention will bring change in global supply chains. Sensors can not only track location but also provide information about conditions (such as temperature and humidity) and handling (such as whether an item has fallen). This may drastically change the distribution of perishable and/or fragile items. When conditions change and items need to be moved, sensors can alert warehouse or retail personnel without the electrical infrastructure required by wired sensors.
  • 91ÊÓÆµ¹ÙÍø will wireless power change healthcare?
    Wireless power can also transform healthcare, freeing patients from the wires that currently need to power many devices that collect critical health data and alert caregivers when vital signs change. Using wirelessly powered devices can improve patient compliance by eliminating bulky batteries and allowing patients to wear the device anywhere.
    In healthcare applications, wireless power supplies that support real-time data transmission can allow nursing teams and/or hospital systems to analyze information immediately, and can also establish an alarm system. When a patient¡¯s vital signs change and immediate action is required, messages are automatically sent to patients, employees, family members, and emergency personnel.
  • 91ÊÓÆµ¹ÙÍø will wireless power change the consumer sector?
    A wireless power supply has the potential to alleviate many consumer concerns. In the case of mobile phones, batteries can be encased, so do not need a wire for charging. In the future consumers will also be able to power their smart homes and personal gadgets through wireless transmission of power. Indoor wireless cameras, air quality and temperature display devices, smart trackers in the home can all be automatically charged. Smartwatch can be worn that do not need to be taken off to charge, enabling people to collect data on such things as sleep habits and fitness activities.
    Another potential use is in the game industry. Game controllers that can be powered without wires and heavy batteries can allow game developers to focus on enhancing experience and adapting to the player's actions. There are currently nearly 3 billion gamers in the world, and this number is still growing, so this is a huge market that can accept wireless power to drive innovation.
    Unmanned Aerial Vehicle (UAV) technology is also a commodity that benefits from wireless power. Whether it is for home enthusiasts who want to keep drones powered during the flight, or using drones in commercial environments (such as warehouses), eliminating heavy batteries will allow the miniaturization of drones and extend the distance that they can fly. The development of wireless power technology is expected to solve many functional problems.

Prospects of wireless power tech supply:

Wireless energy has made great progress in a short period, and the industry will develop in an unprecedented way. The global development of wireless charging-related application technologies is mostly limited to low-power application markets such as consumer electronics and smartphones, as the transmission efficiency is still low. Newly developing, high-power wireless power transmission technologies can be applied to non-contact charging applications such as unmanned aerial vehicles, unmanned ships, unmanned vehicles, and unmanned guided vehicles. Ultra-high conversion efficiency will have great commercial value. Look for wireless power in the future to unleash the full potential of the Internet of Things and inspire innovations across businesses, healthcare, and consumer product development.

Published by Dec 17, 2021 Source :

Further reading

You might also be interested in ...

Headline
Trend
The Path to Upgrading Metal Fabrication: Digital Transformation, Low-Carbon Challenges, and Global Opportunities
Facing resource- and energy-intensive production processes, the metal fabrication industry must harness smart manufacturing and automation¡ªdeploying CNC machining, robotic arms, and AI monitoring¡ªto cut costs and errors while enhancing precision and delivery reliability. Integration of ERP, MES, and APS platforms increases process transparency and enables real-time scheduling adjustments, forming a seamless data and management loop. It¡¯s recommended to support this with global market size data and figures on rising automation investments to boost credibility.
Headline
Trend
Urgent Need for Low-Carbon Transformation in the Metal Fabrication Industry
The urgent need for low-carbon transformation is especially pronounced in the metal fabrication industry, which has long been resource- and energy-intensive with high carbon emissions, making it a key sector for addressing climate change and global carbon neutrality goals.
Headline
Trend
The Multifaceted Innovative Impact of Microfactories on the Manufacturing Industry
Compared to traditional large factories, microfactories have lower investment costs and modular design advantages. Equipment and production units can be quickly replicated and replaced, reducing downtime and maintenance costs, enabling companies to respond more flexibly to market changes and product adjustments. Moreover, microfactories can shorten time-to-market by quickly responding to market demands and technological innovations. Through modular design and digitized production processes, new product development and market introduction speed up significantly, offering a clear advantage in competitive markets.
Headline
Trend
Trends in Advanced Material Processing Technologies and High-Precision Machine Tool Development
In aerospace, automotive, and high-performance manufacturing industries, advanced alloys (such as titanium alloys and nickel-based superalloys) and composites (such as thermoplastic carbon fiber composites) are becoming mainstream due to their lightweight, high strength, and high-temperature resistance. By 2025, the global aerospace composite market is expected to expand rapidly with an annual compound growth rate of about 13.9%, driven by the demand for environmental protection and net-zero emissions, which will further innovate and apply thermoplastic composite technologies. These new materials present challenges such as high hardness, tool wear, heat management, and processing deformation control, requiring processing equipment to have higher rigidity, precision, and thermal stability. Additionally, the production process's demand for rapid prototyping, modular assembly, and recycling drives the simultaneous upgrading of materials and equipment.
Headline
Trend
Intelligent Oil Mist Purification Technology for Machine Tools: From Air Cleaning to Smart Factory Accelerator
As CNC machining and precision metal processing continue to grow, machine tools release large amounts of oil mist, atomized coolant droplets, smoke, and fine oil particles during operation. Prolonged exposure to such environments not only endangers operator health but also affects machine accuracy and maintenance costs. Therefore, highly efficient oil mist filtration equipment has become an essential asset in modern machining facilities.
Headline
Trend
Oil Mist Filtration: Creating Safer Workplaces
In industrial machining processes, the generation of oil smoke and fine oil mist is unavoidable. Without effective collection and filtration, these airborne contaminants pose serious health risks to workers, increasing the likelihood of respiratory diseases and occupational illnesses. At the same time, accumulated oil smoke not only pollutes the work environment and degrades air quality but also accelerates wear and malfunction of machinery, resulting in higher maintenance costs. Furthermore, the presence of flammable oil mist increases the risk of fire hazards, endangering factory safety. To ensure stable, safe production that complies with regulations, oil smoke collection systems have become an essential protective measure in modern smart manufacturing¡ªsafeguarding employee health while enhancing equipment efficiency and environmental quality.
Headline
Trend
EU Rules and Taiwan¡¯s Textile Sustainability Shift
In recent years, the European Union has introduced a series of new regulations on sustainability and the circular economy, with the textile industry being one of the key areas under scrutiny. These regulations not only change how products are designed and manufactured, but also reshape collaboration models across global supply chains. For Taiwan¡¯s export-oriented textile sector, this means accelerating the pace of sustainable transformation in order to remain competitive in the European market¡ªwhile turning challenges into opportunities for brand and technological upgrades.
Headline
Trend
New Landscape in Precision Machining: Five Key Evolution Trends in CNC Toolroom Lathes
As global manufacturing competition intensifies, the precision machining industry is facing unprecedented challenges: parts are becoming smaller and more geometrically complex, machining accuracy requirements are rising, and delivery deadlines are increasingly compressed. As a core piece of equipment in this field, the CNC toolroom lathe is undergoing a profound transformation driven by both technological breakthroughs and evolving market demands.
Headline
Trend
Digital Transformation and Smart Manufacturing Trends in Machining Industry: Applications of Industry 4.0, IoT, and AI
The global manufacturing sector is undergoing an unprecedented wave of digital revolution. This trend brings technological advancement but also intensifies international market competition. The processing industry, a critical part of the manufacturing supply chain, faces multiple challenges including raw material price fluctuations, rising labor costs, and stricter environmental regulations. As consumer demands become more diverse and customized, the processing sector must swiftly adjust production methods. By embracing digital transformation, companies can enhance production efficiency and product quality, securing their competitive edge and market position. Digital transformation is no longer optional but an essential path for sustainable development in manufacturing¡¯s future.
Headline
Trend
Multi-Model Comparison: The Full Evolution from Manual to CNC Toolroom Lathes
High-precision lathes and toolroom lathes specialize in producing small, high-accuracy components, often used in prototype development and sample manufacturing. As CNC toolroom lathes become increasingly widespread, the industry is moving toward digital and automated control to shorten production cycles and improve machining quality and consistency.
Headline
Trend
CNC Market in India Exhibits CAGR Significantly Higher Than Global Average: Market Outlook
India¡¯s manufacturing sector is undergoing a critical transformation phase, with the rapid rise of industrial automation propelling the CNC machine tool market into a global growth hotspot. According to the latest research report by Technavio, the overall machine tool market in India is expected to increase by approximately USD 3.08 billion from 2024 to 2029, with a compound annual growth rate (CAGR) of 11.6%. In contrast, the global machine tool market CAGR is only about 5.07% (2023¨C2029), and the global CNC machine tool market CAGR is around 5.4% (2025¨C2029). India¡¯s market growth rate is nearly twice the global average. Furthermore, supported by its large industrial base and favorable policies, India has strong potential to become a key strategic region in the global CNC machine tool market.
Headline
Trend
Global Competitiveness of Taiwan¡¯s Lathe Industry
As global manufacturing moves toward high-precision and high-efficiency machining, lathe equipment remains an indispensable core tool in aerospace, automotive, energy, and medical sectors. Leveraging a solid manufacturing foundation and flexible customization capabilities, Taiwan has steadily expanded in the international lathe market, becoming a key supplier to both Europe, the United States, and emerging markets. To address diverse machining needs, Taiwanese manufacturers deploy both manual and CNC lathes, covering educational training, basic machining, and large-scale automated production¡ªdemonstrating high adaptability to market demands.
Agree