91ÊÓÆµ¹ÙÍø

Charging Principle, Method and Introduction of Charging Station for Electric Vehicles
Knowledge

Charging Principle, Method and Introduction of Charging Station for Electric Vehicles

A charging station is a device that supplies electric energy for electric vehicles (including pure electric vehicles and plug-in hybrid electric vehicles), similar to the gas station used in fuel vehicles. 91ÊÓÆµ¹ÙÍø does it work and in what scenarios? Let¡¯s find out.
Published: Jun 28, 2022
Charging Principle, Method and Introduction of Charging Station for Electric Vehicles
A charging station is a device that supplies electric energy for electric vehicles (including pure electric vehicles and plug-in hybrid electric vehicles), similar to the gas station used in fuel vehicles. According to the classification of output current provided by charging stations, charging stations can be divided into AC charging stations and DC charging stations. Usually, fast charging stations are all DC charging stations (but not all DC charging stations are fast charging stations). For ordinary pure electric passenger vehicles, it generally takes 3-8 hours for slow charging stations to fully charge, while fast charging stations only take less than an hour. Compared with passenger vehicles, commercial vehicles such as buses and taxis have a higher demand for battery life, so there are usually more charging stations in bus stops, taxi parking lots and other places.

Electric Vehicle Charging station: AC and DC

AC charging station: The AC input is also the output of AC, and the relay is used as the current switch in the middle. This switch is set up on the CSU-PCB and the output of the switch is controlled by the CPU. Senser is installed on the AC power line to monitor the voltage, current and other states for abnormal protection and disconnect the output relay. An electric meter will also be installed on the AC power line to confirm the amount of output power as the basis for background charges. The communication CP Pin of the AC station is the main channel for communication with the vehicle. CP is the output PWM signal to tell the vehicle the maximum amount of power that can be provided. For example: 26.6% Duty PWM means 16A maximum output, 53.3% Duty PWM means 32A maximum output. The background connection can be connected via Ethernet or Wi-Fi/4G.

DC charging station: The DC charging station is mainly composed of multiple groups of power modules. Similar to the AC charging station, DC output also uses the relay as the current switch, and the control is also managed by the CSU. With the AC station, the input and output power lines are also equipped with multiple sets of sensers such as voltage, current and temperature to monitor the entire charging system. In case of abnormality, the output relay or the input circuit breaker will be disconnected when protection is required. A DC meter will also be installed on the DC power line to confirm the amount of output power as the basis for background charges. The communication of the DC station is through CanBus or PLC as the bridge for vehicle communication. CanBus is the regulation of the Japanese standard CHAdeMo and the continental standard GB_T, and the PLC is defined by the European regulation CCS2 and the American regulation CCS1. The background network can be connected through Ethernet or Wi-Fi/4G installed on the CSU board. The communication standard is implemented in accordance with the OCPP 1.6 Jason version released by the OCA Association.

91ÊÓÆµ¹ÙÍø to Use the Electric Vehicle Charging Station?

The use of the charging system generally requires several standard steps:

General Home or Private Place
General home or private use is plug and play.

Business Use
The paid use for commercial purposes is basically the same as the current gas station use:
Step 1: Turn off the engine and open the cover of the charging port.
Step 2: Take the gun and insert it into the charging port to wait for charging.
Step 3: You can swipe the card to pay, which can be divided into membership card or credit card to start charging. When the card is swiped successfully, the charging gun will be locked by the electric vehicle, and the charger will naturally turn on the current switch and directly send electricity to the electric vehicle to start charging (may take 1 minute waiting time)
Step 4: When the charging is completed, swipe the card to unlock and put it back to the charging station to complete the whole charging process.

In Which Situations Is Charging Technology Used?

Charging Application Scenario 1 "Electric-related Use"
It is used for charging electric vehicles, electric locomotives, forklifts, electric boats, drones, etc. In other words, as long as it is a mobile vehicle that uses a power battery, such a charging product needs to be used.

Charging Application Scenario 2 "Charging and Use of Green Energy & Energy Storage Equipment"
Green energy applications have become a global trend. Whether it is solar energy, wind energy or hydrogen fuel energy, the energy generated by the charging system must be converted into battery energy to store energy, and the energy stored in the energy storage must be converted and charged into electric energy on the vehicle.

Charging Application Scenario 3 "Smart Home Application"
In recent years, the electric charging system has begun to be combined with household electricity. For example, the household electricity can be prioritized or the household electricity can be used by using the battery power in the electric vehicle, and the battery energy in the electric vehicle can be used as a household energy storage device.

Charging Application Scenario 4 "Smart Grid Application"
In the past, the power system was a one-way system, that is to say, power was transmitted from electricity company to end users, but in the future, the battery in the electric vehicle can also be fed back to the power grid for use in power dispatching; for example, the lack of power in area A can dispatch the electric power in the electric vehicles in the B area to be transferred to the A area for use.

Published by Jun 28, 2022 Source :

Further reading

You might also be interested in ...

Headline
Knowledge
The Birth of a Fabric: The Science and Craft of Textiles
Although fabric may seem like an ordinary item in our daily lives, its creation involves complex and highly precise processes. From cotton grown in the fields to synthetic fibers produced in factories, each raw material carries unique properties and purposes. Whether it¡¯s the light, airy touch of a shirt or the high protective performance of medical textiles, behind it lies a production chain that spans agriculture, chemistry, and engineering.
Headline
Knowledge
Exploring Major Types of Plastics and Their Properties
Plastic materials are indispensable raw materials in modern manufacturing. Based on their chemical structures and processing characteristics, plastics are mainly classified into two categories: thermoplastics and thermosets. Understanding the properties of these two types aids in material selection and product design, thereby enhancing manufacturing efficiency and product performance.
Headline
Knowledge
Analysis of Green Plastic Manufacturing
With the rise of environmental awareness and the global push for sustainable development goals, traditional plastics face increasing environmental pressure due to their challenges in decomposition and recycling. In response, the manufacturing industry is actively developing and applying eco-friendly plastic materials to build green manufacturing systems. This article explores the types, characteristics, and industrial applications of eco-friendly plastics to assist industry transformation and upgrading.
Headline
Knowledge
Key Parameters for Manufacturing High-Quality Plastic Products
Plastic materials are widely used across various industries due to their lightweight, ease of molding, and versatile properties. 91ÊÓÆµ¹ÙÍøever, different types of plastics exhibit distinct mechanical, thermal, chemical, and dimensional stability characteristics, which directly affect the final product¡¯s performance and service life. Therefore, understanding the performance indicators of plastics is fundamental to designing and manufacturing high-quality plastic products.
Headline
Knowledge
Dry Cutting vs. Wet Cutting: The Balance of Energy Saving, Cost, and Quality
In CNC machining, the choice of cooling method is not simply a technical preference but a multi-faceted trade-off involving cost control, machining quality, tool life, and production line stability. Both dry cutting and wet cutting have their advantages and limitations. To stand out in the fiercely competitive market, companies must shift from pursuing the ¡°theoretically optimal¡± to the ¡°contextually optimal¡± solution.
Headline
Knowledge
The Unsung Heroes of Cutting Tool Coatings: Performance Differences from TiN to DLC
In CNC machining, cutting tool coatings are a critical yet ¡°invisible¡± factor in boosting production efficiency and reducing costs. Although coating thickness is only a few microns, it significantly enhances tool hardness and wear resistance, optimizes heat dissipation, and improves cutting speed and machining accuracy. From classic Titanium Nitride (TiN) to advanced Diamond-Like Carbon (DLC) coatings, different coating materials not only offer varying hardness and heat resistance but also affect tool lifespan and machining adaptability.
Headline
Knowledge
Comprehensive Overview of Plastic Processing Methods: Mastering Key Technologies and Applications
Plastic products play an indispensable role in modern manufacturing, and various plastic processing techniques are crucial for achieving product diversity and efficient production. The following introduces five common and important plastic processing methods, helping readers gain a thorough understanding of their principles, features, and application scopes.
Headline
Knowledge
Fabric Knowledge Base: A Guide to Fiber Applications, From Beginner to Expert Selection
Textile fiber is the fundamental element that determines fabric performance and product suitability. Whether you are a designer, manufacturer, or consumer, understanding the unique characteristics of different fibers and their suitable applications is crucial for precise material selection and informed purchasing. This article will systematically introduce the applications of major natural and synthetic fibers and explain how blending them can overcome the limitations of single fibers, providing versatile functional solutions and helping you build a comprehensive knowledge base of textile applications.
Headline
Knowledge
What is Liquid Injection Molding?
Liquid Injection Molding (LIM) is a manufacturing process that involves injecting liquid silicone rubber (LSR) into precision molds, followed by heating and curing to form high-precision, complex plastic components. Compared to traditional thermoplastic injection molding, LIM offers superior accuracy and the capability to produce more intricate shapes, making it especially suitable for applications demanding high performance and reliability.
Headline
Knowledge
Precision Mold Development and Manufacturing: The Core Technology of Modern Plastic Production
Precision molds form the foundation for the quality and efficiency of plastic part molding. In today¡¯s highly competitive manufacturing environment, the design and fabrication of molds directly impact a product¡¯s functional performance and market competitiveness. Excellent mold development requires not only precise engineering design but also the integration of advanced machining technologies and rigorous quality control to achieve efficient and stable mass production.
Headline
Knowledge
The Magical Journey of Milk Tea
Pouring smooth, rich milk into robust black tea with a unique aroma, then stirring it all together, gets you a cup of milk tea. But do you really know what defines milk tea, and how it differs from the milk tea we enjoy today?
Headline
Knowledge
The Connection Between Textiles and Biomimicry: A Fabric Revolution Inspired by Nature
Lotus leaves after rain shed water droplets without a trace; delicate spider silk is stronger than steel. These are not coincidences but exquisite designs evolved by nature over millions of years. The textile industry is learning from this great designer¡ªnature itself¡ªthrough biomimicry, transforming natural wisdom into fabrics that perform better and are more eco-friendly.
Agree