91ÊÓÆµ¹ÙÍø

Business Opportunities for Lightweight Electric Vehicles
Trend

Business Opportunities for Lightweight Electric Vehicles

With the rapid growth of the global electric vehicle market, research and development of the materials used in new electric vehicles has been accelerated. Improvements in infrastructure, such as an increase in the number of charging stations being used, has also become commonplace. When consumers buy electric vehicles, they hope to enjoy the convenience of being able to travel distances similar to those realized by internal combustion engine vehicles before needing to be refueled. So, the development of batteries with high storage capacity and short recharging times, as well as light-weight vehicle bodies that will reduce power consumption, has received much attention.
Published: Jun 29, 2022
Business Opportunities for Lightweight Electric Vehicles


Competition in the electric vehicle market is becoming more and more intense, and the distance the vehicle can travel on a single charge is a major determining factor most consumers will consider when purchasing an electric vehicle.

Advanced, composite materials can be used to make lightweight vehicle bodies and interiors. This reduction in the weight of the vehicle will give better energy efficiency.

¡°Lightweight¡± vehicles can also help extend the driving distance from a single charge. As vehicles require shorter charging times, and can drive longer distances between charges, this increased convenience will make consumers more willing to buy electric vehicles. As the demand continues to grow, production methods will also improve, further accelerating the global demand.

Current factors that determine mainstream car manufacturing are manufacturing costs, safety, and appearance. Most cars produced now are constructed using heavier raw materials, such as metals, because of the relatively low processing costs. To achieve a major reduction in the weight of the car body, it will be necessary to change the relatively heavy metal raw materials used, such as galvanized steel sheets and steel pipes, to lighter aluminum alloys and ultra-high-strength metal materials. Steel, glass fiber, carbon fiber, and even advanced plastics and composite materials that are high-tech, light in weight, and have the same resistance to stress and deformation, can be used as alternative materials for building the overall body, roof, front and rear fenders, and hood of the vehicle.

According to the American Institute of Aluminum, a car body that uses 0.45 kilograms of aluminum can reduce the weight of a car by 1 kilogram. Theoretically, aluminum cars can reduce weight by as much as 40% compared to steel cars. For a car weighing 1300kg, if the weight of the car can be reduced by 10%, the fuel consumption can be reduced by 8%.

Magnesium alloys are more commonly used to manufacture cylinder blocks, cylinder heads, intake manifolds, instrument panel skeletons, steering wheels, transmission housings, wheel hubs, body parts, door frames, etc. The total amount of magnesium alloys in a car is about 5.8 kilograms to 26.3 kilograms.

At present, titanium and titanium alloys can be used to manufacture chassis parts, engine intake and exhaust system components, crankshaft connecting rod mechanisms, such as connecting rods, valves, valve springs, camshafts, etc. In addition, titanium alloy sheets and pipes can still be used to manufacture mufflers and wheels (frames). The application scope of titanium alloy materials in vehicle manufacturing has gradually expanded from the field of racing cars to industrialized and mass-produced cars.

Ultra-high-strength steel, can be used to manufacture most of the body parts of a car. From a cost to performance perspective, high-strength steel plate is currently the best metal material that can meet the requirements of lightening the car body and improve safety and collision protection. It is expected that the use of high-strength steel will increase, to adapt to, and comply with stricter vehicle safety regulations in various countries.

The strength of boron alloy, ultra-high strength steel can reach 1500 MPa, which is five times that of aluminum alloy. Because its density is only three times that of aluminum alloy, the weight reduction benefit is better than that of aluminum alloy. For example, if an all-aluminum alloy body can reduce the weight of the body by 30%, the boron alloy steel can reduce the weight by 33%. Because ultra-high-strength steel is less expensive than aluminum, manufacturing costs are also reduced by 30% compared with the aluminum. Collision safety is also greater with ultra-high-strength steel, so it meets the dual requirements of light weight and safety at the same time.

When the thickness of the steel plate is reduced by 0.05, 0.10 and 0.15 mm respectively, the body weight can be reduced by 6%, 12% and 18% respectively. Using more advanced high-strength steel to build vehicles can not only effectively increase safety, but also further reduce cabin noise and vibration discomfort, while also reducing the total weight of the vehicle and improving fuel efficiency. Acceleration and drivability are improved without increasing the cost.

Plastics and their composite materials are other important lightweight materials that can reduce the weight of automobiles components by as much as 40%. Compared with general plastics used in existing car manufacturing, engineering plastics have higher heat resistance, wear resistance, chemical resistance, and dimensional stability. They have excellent mechanical properties, and their production consumes less energy.

Since the 1970s, plastics such as foams, cushioning materials, and cushions made of flexible PVC and polyurethane plasticized materials have been widely used in the mainstream automotive industry. The LTD test car, developed by Ford Motor, achieved remarkable results in the lightening of its body after plasticization, reducing the weight of the whole vehicle by more than 300 kilograms.

Composite materials are mainly used in the exterior coverings and sheet portions of the body, such as: fenders, doors, roof panels, engine hoods, fairings, rear compartment partitions, etc. Nearly the entire body can be made of all-composite materials.

The scope of the application of plastics in automotive manufacturing has gradually expanded from interior parts to the body, structural parts, and exterior sheet parts. In the future, focus will be placed on further development of high-performance resin materials and reinforced plastic composite materials structural parts and exterior parts. To improve environmental benefits, in the future, more attention will also be placed on the recyclability of plastic car component materials.

The application of different polyolefin materials is expected to grow significantly due to their low density, good performance, and low cost. It is estimated that the use of polypropylene and polyvinyl chloride materials will continue to increase in the future.

The use of light-weight cloth and plastic materials for vehicle interiors, seats, center console, headliner, side door trim, rear compartment divider, etc., will also add to the lightweight trend.

Reducing the weight of the battery can also significantly reduce the overall weight of the vehicle, and extend the driving distance from a single charge. The energy density of existing electric vehicle batteries is still not high, and there is room for improvement. Compared with traditional fuel vehicles, the power system of electric vehicles (mainly based on batteries) usually accounts for 30% to 40% of the total vehicle weight, generally reaching 500 to 800 kilograms. Therefore, by using more efficient battery materials, or reducing the thickness of the battery separator, the energy density can be increased.

The reducing of the weight of the body and components will be an overall transformation of the entire vehicle. Designs that reduce the vehicles aerodynamic drag will also help reduce energy consumption. All these design improvements will naturally help to expand the overall electric vehicle market.

Published by Jun 29, 2022 Source :

Further reading

You might also be interested in ...

Headline
Trend
EU Rules and Taiwan¡¯s Textile Sustainability Shift
In recent years, the European Union has introduced a series of new regulations on sustainability and the circular economy, with the textile industry being one of the key areas under scrutiny. These regulations not only change how products are designed and manufactured, but also reshape collaboration models across global supply chains. For Taiwan¡¯s export-oriented textile sector, this means accelerating the pace of sustainable transformation in order to remain competitive in the European market¡ªwhile turning challenges into opportunities for brand and technological upgrades.
Headline
Trend
New Landscape in Precision Machining: Five Key Evolution Trends in CNC Toolroom Lathes
As global manufacturing competition intensifies, the precision machining industry is facing unprecedented challenges: parts are becoming smaller and more geometrically complex, machining accuracy requirements are rising, and delivery deadlines are increasingly compressed. As a core piece of equipment in this field, the CNC toolroom lathe is undergoing a profound transformation driven by both technological breakthroughs and evolving market demands.
Headline
Trend
Digital Transformation and Smart Manufacturing Trends in Machining Industry: Applications of Industry 4.0, IoT, and AI
The global manufacturing sector is undergoing an unprecedented wave of digital revolution. This trend brings technological advancement but also intensifies international market competition. The processing industry, a critical part of the manufacturing supply chain, faces multiple challenges including raw material price fluctuations, rising labor costs, and stricter environmental regulations. As consumer demands become more diverse and customized, the processing sector must swiftly adjust production methods. By embracing digital transformation, companies can enhance production efficiency and product quality, securing their competitive edge and market position. Digital transformation is no longer optional but an essential path for sustainable development in manufacturing¡¯s future.
Headline
Trend
Multi-Model Comparison: The Full Evolution from Manual to CNC Toolroom Lathes
High-precision lathes and toolroom lathes specialize in producing small, high-accuracy components, often used in prototype development and sample manufacturing. As CNC toolroom lathes become increasingly widespread, the industry is moving toward digital and automated control to shorten production cycles and improve machining quality and consistency.
Headline
Trend
CNC Market in India Exhibits CAGR Significantly Higher Than Global Average: Market Outlook
India¡¯s manufacturing sector is undergoing a critical transformation phase, with the rapid rise of industrial automation propelling the CNC machine tool market into a global growth hotspot. According to the latest research report by Technavio, the overall machine tool market in India is expected to increase by approximately USD 3.08 billion from 2024 to 2029, with a compound annual growth rate (CAGR) of 11.6%. In contrast, the global machine tool market CAGR is only about 5.07% (2023¨C2029), and the global CNC machine tool market CAGR is around 5.4% (2025¨C2029). India¡¯s market growth rate is nearly twice the global average. Furthermore, supported by its large industrial base and favorable policies, India has strong potential to become a key strategic region in the global CNC machine tool market.
Headline
Trend
Global Competitiveness of Taiwan¡¯s Lathe Industry
As global manufacturing moves toward high-precision and high-efficiency machining, lathe equipment remains an indispensable core tool in aerospace, automotive, energy, and medical sectors. Leveraging a solid manufacturing foundation and flexible customization capabilities, Taiwan has steadily expanded in the international lathe market, becoming a key supplier to both Europe, the United States, and emerging markets. To address diverse machining needs, Taiwanese manufacturers deploy both manual and CNC lathes, covering educational training, basic machining, and large-scale automated production¡ªdemonstrating high adaptability to market demands.
Headline
Trend
Comprehensive Analysis of Vertical Injection Molding Machine Trends: Intelligence, Multifunctionality, and Brand Competition
Vertical injection molding machines, owing to their unique structural design and operational advantages, are widely used in electronics, medical devices, automotive components, and high-precision plastic part manufacturing. They are especially indispensable for insert molding and in-mold decoration (IMD) processes. As global manufacturing advances toward smarter, higher-efficiency operations, the vertical injection molding machine market is showing several clear trends.
Headline
Trend
Textile Black Tech: The Superpowers of Functional Fabrics
Have you ever wondered why some jackets can block wind and rain without making you feel stuffy? Or why some sportswear wicks away sweat quickly, keeping you dry? This isn't magic; it's the superpower of high-performance textiles. They are no longer just clothes but key materials that improve quality of life and ensure personal safety.
Headline
Trend
Integrated Plastic Manufacturing: Industry Applications and Development Trends
Modern manufacturing faces challenges of small-batch diversity, high customization, and shortened time-to-market. Traditional segmented outsourcing models struggle to respond effectively. Mold design, injection molding, and post-processing are handled by different vendors, often causing unstable delivery schedules, significant quality variations, and difficulty in making changes. To address these trends, the industry is accelerating toward integrated ¡°one-stop¡± manufacturing services. Chiakuan Industrial Co., Ltd. has long focused on providing comprehensive plastic manufacturing solutions, covering mold design, injection molding, surface treatment, and assembly and packaging. This fully meets companies¡¯ demands for ¡°one-stop outsourcing,¡± significantly improving development efficiency and delivery quality, while enhancing rapid market response and competitiveness.
Headline
Trend
Edible Film Packaging: The Delicious and Eco-Friendly Solution
Imagine a candy wrapper you don't have to unwrap and that doesn't become trash. Would you eat it or throw it away? With modern technology advancing daily, the food packaging industry has developed edible film packaging to keep up with sustainability trends, allowing you to eat the protective layer directly while enjoying your food.
Headline
Trend
From Trade Wars to Bubble Tea: When Global Tariffs Impact a Local Industry
In today's globalized world, changes in a country's trade policies can have far-reaching consequences. A single tariff agreement or trade barrier not only affects large-scale international commodity trading but can also subtly alter our daily consumption habits. When this wave of trade protectionism sweeps across the globe, even Taiwan's most iconic cultural export¡ªbubble tea¡ªcannot remain untouched. In the following, we'll delve into how tariffs impact the bubble tea industry's supply chain and the challenges and opportunities they present.
Headline
Trend
The Evolution and Challenges of Five-Axis Machining: Future Directions for High-Complexity Manufacturing
Five-axis machining technology marks a major leap for the manufacturing industry, moving from traditional three-axis methods to advanced machining. It enables the production of complex, multi-angled parts in a single setup, significantly boosting both efficiency and precision. 91ÊÓÆµ¹ÙÍøever, to fully unlock the potential of five-axis machining, companies need more than just costly equipment¡ªthey also require skilled operators, rigorous process management, and the support of smart manufacturing technologies such as AI, automation, and digital simulation. Looking ahead, five-axis machining will continue evolving toward greater precision, environmental sustainability, and hybrid manufacturing, integrating sustainable principles to help businesses strengthen their competitiveness. Overall, five-axis machining is not merely an equipment upgrade, but a comprehensive transformation that blends technology, talent, and management¡ªmastering these elements will be the key to business success.
Agree