91ÊÓÆµ¹ÙÍø

Basics to An Electronic Connector
Knowledge

Basics to An Electronic Connector

Electronic connectors are also often referred to as circuit connectors, electrical connectors, and conductor devices that bridge two conductors on a circuit so that current or signals can flow from one conductor to another. An electronic connector is a motor system that can provide a separable interface to connect two secondary electronic systems. Simply put, the components used to complete the electrical connection between circuits or electronic machines are called connector.
Published: Jul 26, 2022
Basics to An Electronic Connector

What is A Connector?

Connectors are a component that electronic engineering technicians often use. Its function is very simple: it sets up a bridge of communication between the blocked or isolated circuits in the circuit, so that the current flows and the circuit realizes the predetermined function. Connectors are an indispensable part of electronic equipment, and you will always find one or more connectors along the path of current flow. The form and structure of connectors are ever-changing, and there are various forms of connectors with different application objects, frequencies, power, and application environments. For example, the connector used to light a light on a court is very different from the connector used to drive a hard drive, and the connector used to ignite a rocket. But no matter what kind of connector, it is necessary to ensure that the current flows smoothly, continuously and reliably. In general terms, what the connector connects is not limited to current. In today's rapid development of optoelectronic technology, in the optical fiber system, the carrier of the signal is light, glass and plastic replace the wires in the ordinary circuit, but the optical signal connectors are also used in pathways, and they serve the same purpose as circuit connectors.

Why Use Connectors?

Imagine what it would be like if there were no connectors? At this time, the circuits should be permanently connected with continuous conductors. For example, if an electronic device is to be connected to the power supply, both ends of the connecting wire must be firmly connected to the electronic device and the power supply by some method (such as welding). As a result, it brings a lot of inconvenience to both production and use. For example, assuming that the battery cable is fixed and welded to the battery, the car manufacturer increases the workload for installing the battery, increasing the production time and cost. When the battery is damaged and needs to be replaced, it is necessary to send the car to a repair station, remove the old one by de-soldering, and then re-soldering the new one, which requires more labor costs. Having the connector saves a lot of hassle, just buy a new battery from the store, disconnect the connector, remove the old battery, put in the new battery, and reconnect the connector. This simple example illustrates the benefits of connectors. It makes the design and production process more convenient and flexible, reducing production and maintenance costs.

Benefits of Connectors

1. Improve the production process: Connectors simplify the assembly process of electronic products. The mass production process is also simplified.

2. Easy maintenance: If an electronic component fails, the failed component can be quickly replaced when the connector is installed.

3. Easy to upgrade: As technology advances, components can be updated when connectors are installed, replacing old ones with new and better components to improve design flexibility. Using connectors enables engineers to design and integrate new products and with greater flexibility when composing systems with components.

Basic Structure of The Connector

The basic structural parts of the connector include contacts, insulators, shells (depending on the variety), and accessories.

1. Contacts: It is the core part of the connector to complete the electrical connection function. Generally, a contact pair is composed of a male contact piece and a female contact piece, and the electrical connection is completed by the insertion of the female contact piece and the male contact piece.

The male contact is a rigid part, and its shape is cylindrical (round pin), square cylinder (square pin) or flat (insert). The male contacts are generally made of brass and phosphor bronze.
?
The female contact is the jack, which is the key part of the contact pair. It relies on the elastic structure to elastically deform when it is inserted into the pin to generate elastic force to form close contact with the male contact to complete the connection. There are many types of jack structures, including cylindrical type (splitting, shrinking), tuning fork type, cantilever beam type (longitudinal slotting), folding type (longitudinal slotting, figure 9), box type (square jack) as well as hyperboloid wire spring jacks and so on.

2. Insulator: The insulator is also often referred to as a base or an insert. Its function is to arrange the contacts at the required position and spacing, and to ensure the insulation between the contacts and between the contacts and the housing. Good insulation resistance, withstand voltage performance and ease of processing are the basic requirements for selecting insulating materials to be processed into insulators.

3. Case: Also known as the shell, it is the outer cover of the connector, which provides mechanical protection for the built-in insulating mounting plate and pins, and provides the alignment of the plug and socket when they are mated, thereby securing the connector to the device.

4. Appendix:?Accessories are divided into structural accessories and installation accessories. Structural accessories such as retaining rings, positioning keys, positioning pins, guide pins, coupling rings, cable clamps, sealing rings, gaskets, etc. Mounting accessories such as screws, nuts, screws, spring rings, etc. Most of the accessories have standard parts and general parts.

Basic Properties of Connectors

The basic performance of connectors can be divided into three categories: mechanical performance, electrical performance, environmental performance.

1. Mechanical perfermance: As far as the connection function is concerned, the insertion force is an important mechanical property. The insertion force is divided into the insertion force and the extraction force (the extraction force is also called the separation force), and the requirements of the two are different. In the relevant standards, there are provisions for the maximum insertion force and the minimum separation force, which means that from the point of view of use, the insertion force should be small (thereby a structure with low insertion force LIF and no insertion force ZIF), and if the separation force is too small, will affect the reliability of the contact.

Another important mechanical property is the mechanical life of the connector. Mechanical life is actually a durability index, which is called mechanical operation in the national standard GB5095. It takes one insertion and one extraction as a cycle, and judges whether the connector can normally complete its connection function (such as contact resistance value) after the specified insertion and extraction cycle.

The insertion force and mechanical life of the connector are related to the contact structure (positive pressure), the coating quality (sliding friction coefficient) of the contact part, and the dimensional accuracy (alignment) of the contact arrangement.

2. Electrical performance: The main electrical properties of connectors include contact resistance, insulation resistance and electric strength.

(a) Contact resistance: A high-quality electrical connector should have a low and stable contact resistance. The contact resistance of connectors varies from a few milliohms to tens of milliohms.

(b) Insulation resistance: an index to measure the insulation performance between the contacts of an electrical connector and between the contacts and the shell, and its magnitude ranges from hundreds of megohms to several gigaohms.

(c) Dielectric strength: or withstand voltage, dielectric withstand voltage is to characterize the ability of the connector to withstand the rated test voltage between the contacts or between the contacts and the shell.

(d) Other electrical properties: EMI leakage attenuation is to evaluate the electromagnetic interference shielding effect of the connector, and electromagnetic interference leakage attenuation is to evaluate the electromagnetic interference shielding effect of the connector, generally tested in the frequency range of 100MHz~10GHz.
?
For RF coaxial connectors, there are also electrical indicators such as characteristic impedance, insertion loss, reflection coefficient, and voltage standing wave ratio (VSWR).

Due to the development of digital technology, in order to connect and transmit high-speed digital pulse signals, a new type of connector, namely high-speed signal connector, has appeared. Correspondingly, in terms of electrical performance, in addition to characteristic impedance, some new electrical indicators have appeared. Such as crosstalk, transmission delay, time delay and so on.

3. Environmental performance:?Common environmental properties include temperature, humidity, salt spray, vibration and shock.

(a) Temperature resistance: At present, the maximum working temperature of the connector is 200¡ãC (except for a few high-temperature special connectors), and the minimum temperature is -65¡ãC. Since the current generates heat at the contact point when the connector is working, resulting in a temperature rise, it is generally believed that the operating temperature should be equal to the sum of the ambient temperature and the temperature rise of the contact point. In some specifications, the maximum temperature rise allowed by the connector at the rated operating current is clearly specified.

(b) Moisture resistance: The intrusion of moisture will affect the insulation performance of the connector and corrode metal parts. The constant damp heat test conditions are relative humidity 90%~95% (according to product specifications, up to 98%), temperature +40¡À20¡æ, and the test time is at least 96 hours according to product regulations. The alternating damp heat test is more severe.

(c) Salt spray resistance: When the connector works in an environment containing moisture and salt, its metal structural parts and the surface treatment layer of the contact parts may cause galvanic corrosion, which affects the physical and electrical properties of the connector. To evaluate the ability of electrical connectors to withstand this environment, the salt spray test is specified. It is to hang the connector in a temperature-controlled test box, and spray the sodium chloride solution with the specified concentration with compressed air to form a salt fog atmosphere. The exposure time is specified by the product specification, at least 48 hours.

(d) Vibration and shock: Vibration and shock resistance are important properties of electrical connectors, especially in special application environments such as aviation and aerospace, railway and road transportation. An important indicator of contact reliability. There are clear provisions in the relevant test methods. The shock test shall specify the peak acceleration, duration and shock pulse shape, as well as the time of interruption of electrical continuity.
?
(e) Other environmental properties: According to the requirements of use, other environmental properties of electrical connectors include sealing (air leakage, liquid pressure), liquid immersion (the ability to resist deterioration of specific liquids), low air pressure, etc.

Published by Jul 26, 2022 Source :

Further reading

You might also be interested in ...

Headline
Knowledge
Exploring Major Types of Plastics and Their Properties
Plastic materials are indispensable raw materials in modern manufacturing. Based on their chemical structures and processing characteristics, plastics are mainly classified into two categories: thermoplastics and thermosets. Understanding the properties of these two types aids in material selection and product design, thereby enhancing manufacturing efficiency and product performance.
Headline
Knowledge
Analysis of Green Plastic Manufacturing
With the rise of environmental awareness and the global push for sustainable development goals, traditional plastics face increasing environmental pressure due to their challenges in decomposition and recycling. In response, the manufacturing industry is actively developing and applying eco-friendly plastic materials to build green manufacturing systems. This article explores the types, characteristics, and industrial applications of eco-friendly plastics to assist industry transformation and upgrading.
Headline
Knowledge
Key Parameters for Manufacturing High-Quality Plastic Products
Plastic materials are widely used across various industries due to their lightweight, ease of molding, and versatile properties. 91ÊÓÆµ¹ÙÍøever, different types of plastics exhibit distinct mechanical, thermal, chemical, and dimensional stability characteristics, which directly affect the final product¡¯s performance and service life. Therefore, understanding the performance indicators of plastics is fundamental to designing and manufacturing high-quality plastic products.
Headline
Knowledge
Dry Cutting vs. Wet Cutting: The Balance of Energy Saving, Cost, and Quality
In CNC machining, the choice of cooling method is not simply a technical preference but a multi-faceted trade-off involving cost control, machining quality, tool life, and production line stability. Both dry cutting and wet cutting have their advantages and limitations. To stand out in the fiercely competitive market, companies must shift from pursuing the ¡°theoretically optimal¡± to the ¡°contextually optimal¡± solution.
Headline
Knowledge
The Unsung Heroes of Cutting Tool Coatings: Performance Differences from TiN to DLC
In CNC machining, cutting tool coatings are a critical yet ¡°invisible¡± factor in boosting production efficiency and reducing costs. Although coating thickness is only a few microns, it significantly enhances tool hardness and wear resistance, optimizes heat dissipation, and improves cutting speed and machining accuracy. From classic Titanium Nitride (TiN) to advanced Diamond-Like Carbon (DLC) coatings, different coating materials not only offer varying hardness and heat resistance but also affect tool lifespan and machining adaptability.
Headline
Knowledge
Comprehensive Overview of Plastic Processing Methods: Mastering Key Technologies and Applications
Plastic products play an indispensable role in modern manufacturing, and various plastic processing techniques are crucial for achieving product diversity and efficient production. The following introduces five common and important plastic processing methods, helping readers gain a thorough understanding of their principles, features, and application scopes.
Headline
Knowledge
Fabric Knowledge Base: A Guide to Fiber Applications, From Beginner to Expert Selection
Textile fiber is the fundamental element that determines fabric performance and product suitability. Whether you are a designer, manufacturer, or consumer, understanding the unique characteristics of different fibers and their suitable applications is crucial for precise material selection and informed purchasing. This article will systematically introduce the applications of major natural and synthetic fibers and explain how blending them can overcome the limitations of single fibers, providing versatile functional solutions and helping you build a comprehensive knowledge base of textile applications.
Headline
Knowledge
What is Liquid Injection Molding?
Liquid Injection Molding (LIM) is a manufacturing process that involves injecting liquid silicone rubber (LSR) into precision molds, followed by heating and curing to form high-precision, complex plastic components. Compared to traditional thermoplastic injection molding, LIM offers superior accuracy and the capability to produce more intricate shapes, making it especially suitable for applications demanding high performance and reliability.
Headline
Knowledge
Precision Mold Development and Manufacturing: The Core Technology of Modern Plastic Production
Precision molds form the foundation for the quality and efficiency of plastic part molding. In today¡¯s highly competitive manufacturing environment, the design and fabrication of molds directly impact a product¡¯s functional performance and market competitiveness. Excellent mold development requires not only precise engineering design but also the integration of advanced machining technologies and rigorous quality control to achieve efficient and stable mass production.
Headline
Knowledge
The Magical Journey of Milk Tea
Pouring smooth, rich milk into robust black tea with a unique aroma, then stirring it all together, gets you a cup of milk tea. But do you really know what defines milk tea, and how it differs from the milk tea we enjoy today?
Headline
Knowledge
The Connection Between Textiles and Biomimicry: A Fabric Revolution Inspired by Nature
Lotus leaves after rain shed water droplets without a trace; delicate spider silk is stronger than steel. These are not coincidences but exquisite designs evolved by nature over millions of years. The textile industry is learning from this great designer¡ªnature itself¡ªthrough biomimicry, transforming natural wisdom into fabrics that perform better and are more eco-friendly.
Headline
Knowledge
What Is a CNC Machine Tool? Unveiling the Secret Behind Modern Factories¡¯ High Efficiency
CNC (Computer Numerical Control) machine tools are automated devices that control machining processes through computer programming. Known for their high efficiency, precision, and stability, they are widely used across industries such as aerospace, automotive, mold making, electronics, medical, and energy. With the rise of Industry 4.0 and smart manufacturing, CNC technology continues to evolve toward multi-axis machining, intelligent control, remote monitoring, and integrated processes. This widespread adoption not only enhances manufacturing performance but also reshapes the workforce, shifting traditional manual skills toward digital operation and system integration¡ªbringing greater production flexibility and competitiveness to businesses.
Agree