91ÊÓÆµ¹ÙÍø

What is the Difference Between Casting and Forging?
Knowledge

What is the Difference Between Casting and Forging?

In-mold manufacturing, casting and forging are often used for processing. What is the difference between these two manufacturing processes?
Published: Feb 10, 2022
What is the Difference Between Casting and Forging?

What is casting?

Casting is a process of smelting metal into a liquid that meets certain requirements, and then pouring it into a mold. After cooling, solidification, and cleaning, a casting (part or blank) with a predetermined shape, size, and performance is obtained. It is one of the basic processes of the modern machinery manufacturing industry.

Casting can be divided into gravity casting and low-pressure casting:
  • Gravity casting: The manufacturing process is simple, and the liquid alloy is poured into the mold to cool and form. Since the casting mold is durable and the construction method is simple, it is a low-cost manufacturing method.
  • Low-pressure casting: The liquid alloy is pressed into the mold at low pressure so that the molecular distribution is even. Because the pores are less and the metal density is higher, the casting is stronger. Low-pressure casting can be safer than with gravity casting but the process can be more complicated.
Casting process:
  • Mold (container) : The liquid alloy is pressed into the mold at low pressure so that the molecular distribution is even. Because the pores are less and the metal density is higher, the casting is stronger. Low-pressure casting can be safer than with gravity casting but the process can be more complicated.
  • Melting and pouring of cast metals: Cast metals (cast alloys) mainly include cast iron, cast steel, and cast non-ferrous alloys.
  • Casting treatment and inspection: Casting treatment includes removal of foreign matter on the core and casting surface, removal of pouring risers, relief grinding of burrs and seams and other protrusions, as well as heat treatment, shaping, anti-rust treatment, and rough machining.
Mechanical properties of material structure:

After the metal is heated and poured into the mold, it recrystallizes. As the metal recrystallizes it forms fine grains with uniform size, so is harder but more brittle than forged items. The cast item can be treated to improve metal plasticity and mechanical properties, but the strength and elasticity will be relatively lower than that of forgings of the same material.

The advantages of casting are:

The cost is lower, and there are no restrictions on the shape. It will be strong but brittle. The cost of the mold used for casting is low, so it more economical to use for parts with complex shapes, especially with complex inner cavities. It has wide adaptability and good comprehensive mechanical properties. High plasticity when melted means less processing. Parts with complex shapes can reduce the cost of processing and internal and external angles are relatively straight.

The disadvantages of casting are:

There are many materials (such as metal, wood, fuel, molding materials, etc.) and equipment (such as metallurgical furnaces, sand mixers, molding machines, core making machines, shakeout machines, shot blasting machines, cast iron plates, etc.) required for foundry production, and they can produce dust, harmful gas, and noise that pollute the environment.

Common casting applications:

Auto parts, motorcycle parts, bicycle parts, large casting parts, machinery industry parts, hand tool parts, transportation parts, mining parts, fitness equipment parts, aviation parts, hardware department parts, medical equipment parts, agricultural machinery parts, civil construction Industrial parts, air tool housings and cylinder turbines, blades, etc.

What is forging?

Forging is a processing method that uses a forging machine to apply pressure to a metal blank to cause plastic deformation to obtain a forging with certain mechanical properties, certain shapes, and sizes.

Forging can be divided into open forging and closed mode forging according to the forming method:
  • Open forging: Uses impact force or pressure to deform the metal between upper and lower irons (blocks) to obtain the required forgings. Forging can be done manually or mechanically.
  • Closed mode forging: Forgings are obtained by pressing and deforming metal blanks in a forging die with a set shape. Forging processes can include die forging, cold heading, rotary forging, extrusion, etc. Forging can be divided into hot forging, warm forging, and cold forging according to the deformation temperature.
Mechanical properties of material structure:

Through the forging process, the metal can improve its structural and mechanical properties and ensure the continuity of the metal fiber structure, so that the fiber structure of the forging is consistent with the appearance of the forging. The metal forging flow line is complete, which can ensure high metal adhesion and good mechanical properties, improving the normal service life of the metal.

Through the forging process, the metal can improve its structural and mechanical properties and ensure the continuity of the metal fiber structure, so that the fiber structure of the forging is consistent with the appearance of the forging. The metal forging flow line is complete, which can ensure high metal adhesion and good mechanical properties, improving the normal service life of the metal.

The advantages of forged wheels are:

Lightweight with high rigidity. Good physical properties, high wear resistance, high strength, superior tensile strength, impact resistance, fatigue resistance, long life, etc.

Materials used for forging are mainly carbon steel and alloy steel of various compositions, followed by aluminum, magnesium, titanium, copper, etc., and their alloys. The original state of the material is a bar, ingot, metal powder, or liquid metal. The ratio of the cross-sectional area of the metal before deformation to the die cross-sectional area after deformation is called the forging ratio. Correct selection of forging ratio has a lot to do with improving product quality and reducing costs.

Common forging applications:

Auto parts, motorcycle parts, bicycle parts, electric vehicle parts, machinery industry parts, chemical industry parts, fitness equipment parts, civil construction industry parts, medical equipment parts, machine tool parts, aviation parts, transmission parts, furniture and home accessories parts, mining parts, transportation parts, hand tool parts, agricultural machinery parts, air tool parts, etc.

Published by Feb 10, 2022 Source :

Further reading

You might also be interested in ...

Headline
Knowledge
The Birth of a Fabric: The Science and Craft of Textiles
Although fabric may seem like an ordinary item in our daily lives, its creation involves complex and highly precise processes. From cotton grown in the fields to synthetic fibers produced in factories, each raw material carries unique properties and purposes. Whether it¡¯s the light, airy touch of a shirt or the high protective performance of medical textiles, behind it lies a production chain that spans agriculture, chemistry, and engineering.
Headline
Knowledge
Exploring Major Types of Plastics and Their Properties
Plastic materials are indispensable raw materials in modern manufacturing. Based on their chemical structures and processing characteristics, plastics are mainly classified into two categories: thermoplastics and thermosets. Understanding the properties of these two types aids in material selection and product design, thereby enhancing manufacturing efficiency and product performance.
Headline
Knowledge
Analysis of Green Plastic Manufacturing
With the rise of environmental awareness and the global push for sustainable development goals, traditional plastics face increasing environmental pressure due to their challenges in decomposition and recycling. In response, the manufacturing industry is actively developing and applying eco-friendly plastic materials to build green manufacturing systems. This article explores the types, characteristics, and industrial applications of eco-friendly plastics to assist industry transformation and upgrading.
Headline
Knowledge
Key Parameters for Manufacturing High-Quality Plastic Products
Plastic materials are widely used across various industries due to their lightweight, ease of molding, and versatile properties. 91ÊÓÆµ¹ÙÍøever, different types of plastics exhibit distinct mechanical, thermal, chemical, and dimensional stability characteristics, which directly affect the final product¡¯s performance and service life. Therefore, understanding the performance indicators of plastics is fundamental to designing and manufacturing high-quality plastic products.
Headline
Knowledge
Dry Cutting vs. Wet Cutting: The Balance of Energy Saving, Cost, and Quality
In CNC machining, the choice of cooling method is not simply a technical preference but a multi-faceted trade-off involving cost control, machining quality, tool life, and production line stability. Both dry cutting and wet cutting have their advantages and limitations. To stand out in the fiercely competitive market, companies must shift from pursuing the ¡°theoretically optimal¡± to the ¡°contextually optimal¡± solution.
Headline
Knowledge
The Unsung Heroes of Cutting Tool Coatings: Performance Differences from TiN to DLC
In CNC machining, cutting tool coatings are a critical yet ¡°invisible¡± factor in boosting production efficiency and reducing costs. Although coating thickness is only a few microns, it significantly enhances tool hardness and wear resistance, optimizes heat dissipation, and improves cutting speed and machining accuracy. From classic Titanium Nitride (TiN) to advanced Diamond-Like Carbon (DLC) coatings, different coating materials not only offer varying hardness and heat resistance but also affect tool lifespan and machining adaptability.
Headline
Knowledge
Comprehensive Overview of Plastic Processing Methods: Mastering Key Technologies and Applications
Plastic products play an indispensable role in modern manufacturing, and various plastic processing techniques are crucial for achieving product diversity and efficient production. The following introduces five common and important plastic processing methods, helping readers gain a thorough understanding of their principles, features, and application scopes.
Headline
Knowledge
Fabric Knowledge Base: A Guide to Fiber Applications, From Beginner to Expert Selection
Textile fiber is the fundamental element that determines fabric performance and product suitability. Whether you are a designer, manufacturer, or consumer, understanding the unique characteristics of different fibers and their suitable applications is crucial for precise material selection and informed purchasing. This article will systematically introduce the applications of major natural and synthetic fibers and explain how blending them can overcome the limitations of single fibers, providing versatile functional solutions and helping you build a comprehensive knowledge base of textile applications.
Headline
Knowledge
What is Liquid Injection Molding?
Liquid Injection Molding (LIM) is a manufacturing process that involves injecting liquid silicone rubber (LSR) into precision molds, followed by heating and curing to form high-precision, complex plastic components. Compared to traditional thermoplastic injection molding, LIM offers superior accuracy and the capability to produce more intricate shapes, making it especially suitable for applications demanding high performance and reliability.
Headline
Knowledge
Precision Mold Development and Manufacturing: The Core Technology of Modern Plastic Production
Precision molds form the foundation for the quality and efficiency of plastic part molding. In today¡¯s highly competitive manufacturing environment, the design and fabrication of molds directly impact a product¡¯s functional performance and market competitiveness. Excellent mold development requires not only precise engineering design but also the integration of advanced machining technologies and rigorous quality control to achieve efficient and stable mass production.
Headline
Knowledge
The Magical Journey of Milk Tea
Pouring smooth, rich milk into robust black tea with a unique aroma, then stirring it all together, gets you a cup of milk tea. But do you really know what defines milk tea, and how it differs from the milk tea we enjoy today?
Headline
Knowledge
The Connection Between Textiles and Biomimicry: A Fabric Revolution Inspired by Nature
Lotus leaves after rain shed water droplets without a trace; delicate spider silk is stronger than steel. These are not coincidences but exquisite designs evolved by nature over millions of years. The textile industry is learning from this great designer¡ªnature itself¡ªthrough biomimicry, transforming natural wisdom into fabrics that perform better and are more eco-friendly.
Agree