91ÊÓÆµ¹ÙÍø

What is the Computer-Aided Diagnosis? Promote the Development of Smart Medical Care
Trend

What is the Computer-Aided Diagnosis? Promote the Development of Smart Medical Care

Refers to the use of imaging, medical image processing technology, and other possible physiological and biochemical means, combined with computer analysis and calculation, to assist radiologists in finding lesions and improve the accuracy of diagnosis.
Published: Nov 11, 2022
What is the Computer-Aided Diagnosis? Promote the Development of Smart Medical Care

What is AI Healthcare? The Combined Application of Digital Technology and Public Healthcare

Smart medical care is mainly based on current medical care and introduces deep image recognition and AI. The purpose of technologies such as learning or neural network is to provide predictable and tailor-made medical services, thereby reducing the repetitive work of doctors and improving the efficiency, accuracy, and convenience of medical services. AI is introduced into the medical industry. The medical 4.0 era of new value has been derived. Artificial intelligence assists medical treatment, but it needs to be certified by the US FDA before it can be successfully introduced in various countries. The medical images provided for machine learning must be clear and of a certain quality to have accurate AI effects. The technical team may be able to strengthen the technology by providing clear images for these organ parts that work 24 hours a day, and then let AI perform deep learning (DL).

Aging, low birthrate, and lack of nursing manpower will impact the entire medical and nursing industry. Combining medical and ICT technology will save repetitive mechanical work, allowing practitioners in the big health industry to truly spend their time with caregiver interaction.

Smart healthcare refers to the application of artificial intelligence technology (AI) in the medical field. The World Health Organization (WHO) defines eHealth as "the use of information and communication technologies (ICT) to support health and health-related fields". The World Health Organization has shifted its focus from information communications to broader digital technologies, formally recognizing the important role of digital technologies in improving public health. And urging member states to prioritize the development of digital health technologies as a means of promoting Universal Health Coverage (UHC) and promoting Means of Sustainable Development Goals (SDGs). It also further defines Digital Health as "covering eHealth, mHealth, and other emerging technologies applied in the field of health care, such as the use of advanced computer science, such as big data, artificial intelligence, etc.". Under the development context of the relevant concepts and strategies of the World Health Organization, smart health care is a part of the development of digital health, and the development of smart medical care is an important part of smart health care.

Advantages of Smart Medical Applications:

  • Assist in medical decision-making: Develop the hospital's digital decision-making control center, organize data analysis, and help speed up the hospital's efficiency in dealing with emergencies.
  • Improve doctor-patient relationship: Introduce digital technology and artificial intelligence (AI) to help improve processes and enhance patient experience and the doctor-patient relationship.
  • Simplify administrative processes: Through technologies such as Process Robotics (PRA) and artificial intelligence, caregivers can focus on care work instead of spending time on administrative work.
  • Optimize service process: Analyze the bottleneck of hospital service, and improve service quality through design optimization of the hospital service process.
  • Improve operational efficiency: Introduce technologies such as digital supply chain, automation, and robotics to improve operational management and back-office efficiency.

What is the Computer-Aided Diagnosis?

Computer-aided detection (CADe), also known as computer-aided diagnosis (CADx), is a system that helps doctors interpret medical images. Imaging techniques in X-rays, MRIs, endoscopy, and diagnostic ultrasound generate vast amounts of information that must be thoroughly analyzed and evaluated by a radiologist or other medical professional in a short period. CAD systems process digital images or videos of typical appearances and highlight salient features, such as possible diseases, to provide input to support decisions made by professionals. CAD has potential future applications in digital pathology with the advent of whole-section imaging and machine-learning algorithms. So far, its application has been limited to quantifying immunostaining, but standard H&E staining is also being investigated.

CAD technology mainly refers to computer-aided technology based on medical imaging. The CAD technology that is often said now mainly refers to computer-aided technology based on medical imaging. This is to be distinguished from computer-aided detection, which focuses on the detection. The computer marks abnormal signs and provides common image processing techniques without a diagnosis. Computer-aided diagnosis is the extension and ultimate purpose of computer-aided diagnosis, and computer-aided diagnosis is the basis and necessary stage of computer-aided diagnosis. The adoption of the CAD system helps to improve the sensitivity and specificity of the doctor's diagnosis.

CAD is an interdisciplinary technology that combines elements of artificial intelligence and computer vision with image processing in radiology and pathology. A typical application is the detection of tumors. For example, some hospitals use CAD to support mammograms (breast cancer diagnosis), colonoscopies for polyps, and preventive checkups for lung cancer.

Computer-aided inspection (CADe) systems are often limited to marking prominent structures and parts. Computer-aided diagnosis (CADx) systems assess salient structures. Computer-Aided Simple Classification (CAST) is another type of CAD that performs fully automated initial interpretation and categorizes studies into meaningful categories such as negative and positive. CAST is particularly useful for emergency diagnostic imaging, where the rapid diagnosis of life-threatening critical situations is required.

Computed Tomography (CT):
After the CT image is produced, the medical staff will transmit the image to the computer-aided workstation. Once the workstation has data, it will automatically run the program. Preliminary detection results will be generated in about 1 to 3 minutes. This result is displayed with a picture with additional indicators, indicating what kind of condition is in that area. By clicking on the picture, the doctor can zoom in on the features of each affected part to further diagnose whether it is abnormal. Although AI technology can quickly mark subtle and large amounts of information, sometimes the parameter settings of the AI system are too sensitive. For example, it may just be a normal block of blood vessels, but the system does not behave as abnormal. At this time, an experienced physician is still required to screen and exclude.

Disease probability prediction:
In the system with a very user-friendly interface, physicians can obtain the probability of each disease by clicking on the department and entering items such as age, symptoms, data, and imaging parameters.

Biomarker report:
Physicians can click on different biomarkers in the system to get different analysis reports. For example, before or after the developer is injected, different data and graphs with comparative symptoms can be obtained. In addition, the system can also add database data again, distinguish the left and right sides of the graph or display it symmetrically. Whether there is a disease in the gray matter, white matter, and basal ganglia of the brain will also clearly show the probability for the doctor's diagnosis reference.

CAD Technical Methods and Steps:

CAD is based on highly sophisticated pattern recognition. Scan X-rays or other types of images for suspicious structures. Usually, several thousand images are needed to optimize the algorithm. The digital image data is copied to a CAD server in DICOM format and prepared and analyzed in several steps.

  1. Preprocessing:
    • Reduce artifacts (errors in images).
    • Image noise reduction.
    • Flattening (harmonization) of image quality (increasing contrast), is used to clear different basic conditions of the image.
    • Filter.
  2. Divide into:
    • Discrimination of different structures in the image, e.g., heart, lungs, thorax, blood vessels, possible round lesions.
    • Matched with the anatomical database.
    • Sample grayscale values in the volume of interest.
  3. Structure/ROI (Region of Interest) Analysis Each detected region is individually analyzed for special features:
    • Compact.
    • Form, size, and location.
    • A reference to close-by structure/ROI.
    • Analysis of the mean gray value within the ROI.
    • The ratio of gray level to structure boundaries within the ROI.
  4. Evaluation/Classification After analyzing the structure, each ROI was evaluated (scored) individually to obtain the probability of TP.
    • Nearest neighbor rule.
    • Minimum distance classifier.
    • Cascading Classifiers.
    • Naive Bayes classifier.
    • Artificial neural networks.
    • Radial Basis Function Network (RBF).
    • Support Vector Machines (SVM).
    • Principal Component Analysis (PCA).

Matters Needing Attention in CAD Technology:

  • Sensitivity and specificity:
    CAD systems attempt to highlight suspicious structures. Today's CAD systems cannot detect pathological changes 100% of the time. Depending on the system and application, the hit rate can be as high as 90%. Correct hits are called true positives (TP), while false positives (FP) are mislabeled in healthy parts. The fewer FPs indicated, the higher the specificity. Low specificity reduces the acceptance of the CAD system because the user must identify all of these false hits. The FP rate in lung overview exams can be reduced to 2 per exam. In other sections, the FP rate maybe 25 or higher. The FP rate in the caste system must be extremely low (less than 1 per examination) for meaningful study classification.
  • Absolute detection rate:
    The radiologist's absolute detection rate is a surrogate for sensitivity and specificity. Overall, clinical trial results regarding sensitivity, specificity, and absolute detection rates can vary significantly. Each study outcome depends on its underlying conditions and must be assessed against those conditions.
    • Retrospective or prospective design.
    • Use the quality of the image.
    • Conditions for X-ray examination.
    • The experience and education of radiologists.
    • Disease type.
    • Consider the size of the lesion.
Published by Nov 11, 2022 Source :, Source :

Further reading

You might also be interested in ...

Headline
Trend
EU Rules and Taiwan¡¯s Textile Sustainability Shift
In recent years, the European Union has introduced a series of new regulations on sustainability and the circular economy, with the textile industry being one of the key areas under scrutiny. These regulations not only change how products are designed and manufactured, but also reshape collaboration models across global supply chains. For Taiwan¡¯s export-oriented textile sector, this means accelerating the pace of sustainable transformation in order to remain competitive in the European market¡ªwhile turning challenges into opportunities for brand and technological upgrades.
Headline
Trend
New Landscape in Precision Machining: Five Key Evolution Trends in CNC Toolroom Lathes
As global manufacturing competition intensifies, the precision machining industry is facing unprecedented challenges: parts are becoming smaller and more geometrically complex, machining accuracy requirements are rising, and delivery deadlines are increasingly compressed. As a core piece of equipment in this field, the CNC toolroom lathe is undergoing a profound transformation driven by both technological breakthroughs and evolving market demands.
Headline
Trend
Digital Transformation and Smart Manufacturing Trends in Machining Industry: Applications of Industry 4.0, IoT, and AI
The global manufacturing sector is undergoing an unprecedented wave of digital revolution. This trend brings technological advancement but also intensifies international market competition. The processing industry, a critical part of the manufacturing supply chain, faces multiple challenges including raw material price fluctuations, rising labor costs, and stricter environmental regulations. As consumer demands become more diverse and customized, the processing sector must swiftly adjust production methods. By embracing digital transformation, companies can enhance production efficiency and product quality, securing their competitive edge and market position. Digital transformation is no longer optional but an essential path for sustainable development in manufacturing¡¯s future.
Headline
Trend
Multi-Model Comparison: The Full Evolution from Manual to CNC Toolroom Lathes
High-precision lathes and toolroom lathes specialize in producing small, high-accuracy components, often used in prototype development and sample manufacturing. As CNC toolroom lathes become increasingly widespread, the industry is moving toward digital and automated control to shorten production cycles and improve machining quality and consistency.
Headline
Trend
CNC Market in India Exhibits CAGR Significantly Higher Than Global Average: Market Outlook
India¡¯s manufacturing sector is undergoing a critical transformation phase, with the rapid rise of industrial automation propelling the CNC machine tool market into a global growth hotspot. According to the latest research report by Technavio, the overall machine tool market in India is expected to increase by approximately USD 3.08 billion from 2024 to 2029, with a compound annual growth rate (CAGR) of 11.6%. In contrast, the global machine tool market CAGR is only about 5.07% (2023¨C2029), and the global CNC machine tool market CAGR is around 5.4% (2025¨C2029). India¡¯s market growth rate is nearly twice the global average. Furthermore, supported by its large industrial base and favorable policies, India has strong potential to become a key strategic region in the global CNC machine tool market.
Headline
Trend
Global Competitiveness of Taiwan¡¯s Lathe Industry
As global manufacturing moves toward high-precision and high-efficiency machining, lathe equipment remains an indispensable core tool in aerospace, automotive, energy, and medical sectors. Leveraging a solid manufacturing foundation and flexible customization capabilities, Taiwan has steadily expanded in the international lathe market, becoming a key supplier to both Europe, the United States, and emerging markets. To address diverse machining needs, Taiwanese manufacturers deploy both manual and CNC lathes, covering educational training, basic machining, and large-scale automated production¡ªdemonstrating high adaptability to market demands.
Headline
Trend
Comprehensive Analysis of Vertical Injection Molding Machine Trends: Intelligence, Multifunctionality, and Brand Competition
Vertical injection molding machines, owing to their unique structural design and operational advantages, are widely used in electronics, medical devices, automotive components, and high-precision plastic part manufacturing. They are especially indispensable for insert molding and in-mold decoration (IMD) processes. As global manufacturing advances toward smarter, higher-efficiency operations, the vertical injection molding machine market is showing several clear trends.
Headline
Trend
Textile Black Tech: The Superpowers of Functional Fabrics
Have you ever wondered why some jackets can block wind and rain without making you feel stuffy? Or why some sportswear wicks away sweat quickly, keeping you dry? This isn't magic; it's the superpower of high-performance textiles. They are no longer just clothes but key materials that improve quality of life and ensure personal safety.
Headline
Trend
Integrated Plastic Manufacturing: Industry Applications and Development Trends
Modern manufacturing faces challenges of small-batch diversity, high customization, and shortened time-to-market. Traditional segmented outsourcing models struggle to respond effectively. Mold design, injection molding, and post-processing are handled by different vendors, often causing unstable delivery schedules, significant quality variations, and difficulty in making changes. To address these trends, the industry is accelerating toward integrated ¡°one-stop¡± manufacturing services. Chiakuan Industrial Co., Ltd. has long focused on providing comprehensive plastic manufacturing solutions, covering mold design, injection molding, surface treatment, and assembly and packaging. This fully meets companies¡¯ demands for ¡°one-stop outsourcing,¡± significantly improving development efficiency and delivery quality, while enhancing rapid market response and competitiveness.
Headline
Trend
Edible Film Packaging: The Delicious and Eco-Friendly Solution
Imagine a candy wrapper you don't have to unwrap and that doesn't become trash. Would you eat it or throw it away? With modern technology advancing daily, the food packaging industry has developed edible film packaging to keep up with sustainability trends, allowing you to eat the protective layer directly while enjoying your food.
Headline
Trend
From Trade Wars to Bubble Tea: When Global Tariffs Impact a Local Industry
In today's globalized world, changes in a country's trade policies can have far-reaching consequences. A single tariff agreement or trade barrier not only affects large-scale international commodity trading but can also subtly alter our daily consumption habits. When this wave of trade protectionism sweeps across the globe, even Taiwan's most iconic cultural export¡ªbubble tea¡ªcannot remain untouched. In the following, we'll delve into how tariffs impact the bubble tea industry's supply chain and the challenges and opportunities they present.
Headline
Trend
The Evolution and Challenges of Five-Axis Machining: Future Directions for High-Complexity Manufacturing
Five-axis machining technology marks a major leap for the manufacturing industry, moving from traditional three-axis methods to advanced machining. It enables the production of complex, multi-angled parts in a single setup, significantly boosting both efficiency and precision. 91ÊÓÆµ¹ÙÍøever, to fully unlock the potential of five-axis machining, companies need more than just costly equipment¡ªthey also require skilled operators, rigorous process management, and the support of smart manufacturing technologies such as AI, automation, and digital simulation. Looking ahead, five-axis machining will continue evolving toward greater precision, environmental sustainability, and hybrid manufacturing, integrating sustainable principles to help businesses strengthen their competitiveness. Overall, five-axis machining is not merely an equipment upgrade, but a comprehensive transformation that blends technology, talent, and management¡ªmastering these elements will be the key to business success.
Agree