91ÊÓÆµ¹ÙÍø

What is Heat-assisted Magnetic Technology?
Knowledge

What is Heat-assisted Magnetic Technology?

Heat-Assisted Magnetic Recording (HAMR) is a technology that uses laser heat to first heat highly stable media to assist in the magnetic recording of data.
Published: Jan 16, 2023
What is Heat-assisted Magnetic Technology?

What is Heat-assisted Magnetic Technology?

Heat-assisted magnetic recording technology is a technology that heats the magnetic storage medium by laser to reduce the coercive force of the medium so that the magnetic head can easily magnetize the storage medium. Due to the superparamagnetic effect, to achieve the goal of ultra-high-density storage, the coercive force of the medium needs to be greatly increased, which significantly increases the difficulty of magnetic head writing. The use of HAMR technology can effectively improve the high-density information writing ability of the magnetic head under the condition of micro-field strength, so it is considered to be one of the next-generation ultra-high-density storage technology approaches that can indirectly deal with the superparamagnetic effect.

Heat-Assisted Magnetic Recording (HAMR) is a technology that uses laser heat to first heat highly stable media to assist in the magnetic recording of data. HAMR technology requires highly stable magnetic composite materials like platinum-iron alloys. These materials can store a single bit in a relatively small area and are no longer limited by superparamagnetic. Many technologies currently used in hard disk storage are still limited by superparamagnetic. The only downside is that they have to be heated to accommodate the changing direction of the magnetic field.

Heat-Assisted Magnetic Recording technology (HAMR) uses micro-laser lamps on the disk head to heat part of the magnetic area before writing. The laser heats the tiny area of the disk in a short time to improve access efficiency.

The second storage technology is to etch tracks or even bit locations on the storage medium and realize precise positioning on the rotating magnetic sheet, without heating to read the data. Regardless of whether it is HAMR or regular media, the ultimate goal is to achieve a capacity density of 1~10TB per square inch of the hard disk at a price close to the current cost. Every major hard disk manufacturer has dabbled in the above two technologies, and these two technologies also have many derivative methods.

A Technological Breakthrough in HAMR Technology

HAMR technology overcomes the current problem that hinders the continuous increase of hard disk storage density. It uses laser beams to precisely focus on the area where data will be written, heats the medium, and avoids the superparamagnetic effect of the magnetic medium. 91ÊÓÆµ¹ÙÍøever, after the disk is heated to the curie point by laser, the disk loses its magnetism and superparamagnetic effect. After the data is written, the disk will cool down rapidly to stabilize the written data. Through such precise heating, HAMR can significantly increase the writing density of hard disks. Theoretically, the ultimate storage density that can be achieved with this technology can reach 10TB/square inch.

Although the principle of heat-assisted magnetic recording technology is easy to say, it is not so simple to implement. HAMR requires a new storage medium, a redesigned laser read-write head, a special NFT near-field optical sensor, and many other unused or mass-produced components. So, after talking for so many years, they have not yet fully reached commercialization and achieved mass production and sales.

Published by Jan 16, 2023

Further reading

You might also be interested in ...

Headline
Knowledge
Analysis of Green Plastic Manufacturing
With the rise of environmental awareness and the global push for sustainable development goals, traditional plastics face increasing environmental pressure due to their challenges in decomposition and recycling. In response, the manufacturing industry is actively developing and applying eco-friendly plastic materials to build green manufacturing systems. This article explores the types, characteristics, and industrial applications of eco-friendly plastics to assist industry transformation and upgrading.
Headline
Knowledge
Dry Cutting vs. Wet Cutting: The Balance of Energy Saving, Cost, and Quality
In CNC machining, the choice of cooling method is not simply a technical preference but a multi-faceted trade-off involving cost control, machining quality, tool life, and production line stability. Both dry cutting and wet cutting have their advantages and limitations. To stand out in the fiercely competitive market, companies must shift from pursuing the ¡°theoretically optimal¡± to the ¡°contextually optimal¡± solution.
Headline
Knowledge
The Unsung Heroes of Cutting Tool Coatings: Performance Differences from TiN to DLC
In CNC machining, cutting tool coatings are a critical yet ¡°invisible¡± factor in boosting production efficiency and reducing costs. Although coating thickness is only a few microns, it significantly enhances tool hardness and wear resistance, optimizes heat dissipation, and improves cutting speed and machining accuracy. From classic Titanium Nitride (TiN) to advanced Diamond-Like Carbon (DLC) coatings, different coating materials not only offer varying hardness and heat resistance but also affect tool lifespan and machining adaptability.
Headline
Knowledge
Comprehensive Overview of Plastic Processing Methods: Mastering Key Technologies and Applications
Plastic products play an indispensable role in modern manufacturing, and various plastic processing techniques are crucial for achieving product diversity and efficient production. The following introduces five common and important plastic processing methods, helping readers gain a thorough understanding of their principles, features, and application scopes.
Headline
Knowledge
What is Liquid Injection Molding?
Liquid Injection Molding (LIM) is a manufacturing process that involves injecting liquid silicone rubber (LSR) into precision molds, followed by heating and curing to form high-precision, complex plastic components. Compared to traditional thermoplastic injection molding, LIM offers superior accuracy and the capability to produce more intricate shapes, making it especially suitable for applications demanding high performance and reliability.
Headline
Knowledge
Precision Mold Development and Manufacturing: The Core Technology of Modern Plastic Production
Precision molds form the foundation for the quality and efficiency of plastic part molding. In today¡¯s highly competitive manufacturing environment, the design and fabrication of molds directly impact a product¡¯s functional performance and market competitiveness. Excellent mold development requires not only precise engineering design but also the integration of advanced machining technologies and rigorous quality control to achieve efficient and stable mass production.
Headline
Knowledge
The Magical Journey of Milk Tea
Pouring smooth, rich milk into robust black tea with a unique aroma, then stirring it all together, gets you a cup of milk tea. But do you really know what defines milk tea, and how it differs from the milk tea we enjoy today?
Headline
Knowledge
The Connection Between Textiles and Biomimicry: A Fabric Revolution Inspired by Nature
Lotus leaves after rain shed water droplets without a trace; delicate spider silk is stronger than steel. These are not coincidences but exquisite designs evolved by nature over millions of years. The textile industry is learning from this great designer¡ªnature itself¡ªthrough biomimicry, transforming natural wisdom into fabrics that perform better and are more eco-friendly.
Headline
Knowledge
What Is a CNC Machine Tool? Unveiling the Secret Behind Modern Factories¡¯ High Efficiency
CNC (Computer Numerical Control) machine tools are automated devices that control machining processes through computer programming. Known for their high efficiency, precision, and stability, they are widely used across industries such as aerospace, automotive, mold making, electronics, medical, and energy. With the rise of Industry 4.0 and smart manufacturing, CNC technology continues to evolve toward multi-axis machining, intelligent control, remote monitoring, and integrated processes. This widespread adoption not only enhances manufacturing performance but also reshapes the workforce, shifting traditional manual skills toward digital operation and system integration¡ªbringing greater production flexibility and competitiveness to businesses.
Headline
Knowledge
The Resistor's Role in Modern Manufacturing
A resistor is a fundamental and indispensable component in electronic circuits. Its physical design is not arbitrary; rather, it is closely linked to its function, power requirements, and manufacturing method. Every detail, from its size and material to its structure, reveals its intended application. Understanding a resistor's form is like reading its "user manual," helping us to apply it more precisely.
Headline
Knowledge
The Manufacturing Process of Construction Screws: An Overview
The manufacturing of construction screws involves multiple carefully controlled steps to ensure high quality and durability. It begins with selecting suitable raw materials, usually low-carbon steel wire, followed by cold heading to form the screw head. Threads are then created through thread rolling, which preserves the metal¡¯s strength better than cutting. Heat treatment enhances hardness and toughness, while surface coatings protect against corrosion. Rigorous quality control is maintained throughout the process, and finally, the screws are packaged for safe transportation. Each stage is crucial to producing reliable screws capable of withstanding tough conditions in construction and industrial use.
Headline
Knowledge
The Transformation and Innovation of Flexible Magnetic Materials in Educational Applications
In today's era where digital education and maker learning are prevalent, the design of teaching tools is no longer limited to static displays but is moving toward interactivity, modularity, and creative expansion. Flexible magnetic materials¡ªespecially flexible magnets that can be cut, printed, and adhered¡ªare gradually becoming indispensable media in the new generation of educational settings. These materials can be flexibly applied to puzzle teaching aids, display boards, and modular signage systems. Moreover, due to their ease of processing and cost-effectiveness, they widely support hands-on practice and creative activities in STEAM education (Science, Technology, Engineering, Arts, and Mathematics).
Agree