91ÊÓÆµ¹ÙÍø

What Is Grinding and Its Working Principle and Type?
Knowledge

What Is Grinding and Its Working Principle and Type?

The principle of grinding precision machining: Grinding is an abrasive precision machining method that uses a lapping tool and abrasive to grind off a thin layer of metal from the surface of the workpiece based on fine machining.
Published: Sep 28, 2021
What Is Grinding and Its Working Principle and Type?

What Is Grinding Process?

Define grinding:

Grinding is a unit operation that reduces solid matter into smaller particles.

Define grinding process:

Grinding is a processing method that uses abrasives to remove material. The process of removing material with abrasives is one of the earliest production techniques used by humans.

Grinding process is a micro-processing method. Grinding uses a grinding tools and abrasive (a free abrasive) to generate relative movement between the processed surface of the workpiece and the grinding tool, and apply pressure to remove it from the workpiece. Tiny surface raised layer to reduce surface roughness and improve dimensional accuracy, geometric accuracy, etc. Grinding process can be used in various metal and non-metal materials. The processed surface shapes include flat surfaces, inner and outer cylindrical and conical surfaces, convex and concave spherical surfaces, threads, tooth surfaces, and other profiles. In-mold manufacturing, especially precision die-casting molds, plastic molds, and automobile panel molds that require high product appearance quality are widely used.

What Is the Working Principle of Grinding Machines?

  1. During the grinding process, the grinding surface of the grinder tool is evenly coated with abrasive. If the material hardness of the grinding tool is lower than that of the workpiece, when the grinding tool and the workpiece move relative to each other under pressure, the abrasive has sharp edges and corners. Some of the particles with high hardness will be pressed into the surface of the lap to produce cutting action (plastic deformation), and some will roll or slide between the grinding tool and the surface of the workpiece to produce slippage (elastic deformation). These particles, like countless cutting blades, produce a small amount of cutting action on the surface of the workpiece, and evenly cut a thin layer of metal from the surface of the workpiece. At the same time, under the action of the grinding pressure, the passivated abrasive particles squeeze the peak points of the processed surface to produce micro-extrusion plastic deformation on the processed surface, so that the workpiece gradually obtains high dimensional accuracy and low surface roughness.

  2. When using abrasives such as chromium oxide and stearic acid, the abrasive and the processed surface of the workpiece have a chemical effect during the grinding process, resulting in a very thin oxide film, which is easily worn off. The grinding process is the process of continuous generation and erasing of oxide film, so many cycles of repetition reduce the roughness of the processed surface.

What Are the Types of Grinding Processes?

  1. Manual grinding:

    The relative movement of the grinder machine and the workpiece is operated manually. The processing quality depends on the skill level of the operator, the labor intensity is high, and the work efficiency is low. Suitable for various surfaces of various metal and non-metal workpieces. The local narrow slits, slots, deep holes, blind holes, and dead corners on the mold forming parts are still mainly hand-grinded.

  2. Semi-mechanical grinding:

    One of the grinder machine and workpiece adopts simple mechanical movement, and the other adopts manual operation. The processing quality is still related to the operator's skills, and the labor intensity is reduced. Mainly used for grinding the inner and outer cylindrical, flat, and conical surfaces of the workpiece. Commonly used when grinding mold parts.

  3. Mechanical grinding:

    The movement of the grinder machine and the workpiece adopts mechanical movement. The processing quality is guaranteed by mechanical equipment, and the work efficiency is relatively high. But it can only be applied to the grinding of parts such as the surface shape is not too complicated.

Conditions of Use of Abrasive

  1. Wet grinding:

    During the grinding process, the abrasive is applied to the surface of the grinding tool, and the grinding material rolls or slides between the grinding tool and the workpiece, forming a cutting effect on the surface of the workpiece. The processing efficiency is high, but the geometric shape and dimensional accuracy, and gloss of the processed surface are not as good as dry grinding. It is mostly used for rough grinding and semi-finishing of flat surfaces and inner and outer cylindrical surfaces.

  2. Dry grinding:

    Before grinding, the abrasive particles are evenly pressed into the working surface of the grind to a certain depth, which is called sand embedding. During the grinding process, the grinding tool and the workpiece maintain a certain pressure and move relative to a certain trajectory to achieve micro-cutting, thereby obtaining high dimensional accuracy and low surface roughness. During dry grinding, generally no or only a small amount of lubricating abrasive is applied. It is generally used for the fine grinding of planes, and the production efficiency is not high.

  3. Semi-dry grinding:

    Using paste grinding paste, like wet grinding. When grinding, according to the requirements of workpiece processing accuracy and surface roughness, apply the grinding paste promptly. It is suitable for rough and fine grinding of all kinds of workpieces.

Applications of Grinding Technology

  1. Low surface roughness:

    Grinding with surface grinder belongs to micro-feed grinding, and the cutting depth is small, which is beneficial to reduce the surface roughness value of the workpiece. The surface grinding machine processed surface roughness can reach Ra0.01¦Ìm.

  2. High dimensional accuracy:

    Grinding uses extremely fine micronized abrasives, and the machine tool, grinding tool, and workpiece are in an elastic floating working state. Under the action of low speed and low pressure, the convex points of the processed surface are successively ground, and the processing accuracy can reach 0. 1¦Ìm¡«0.01¦Ìm.

  3. High shape accuracy:

    When grinding, the workpiece is basically in a free state, the force is uniform, the movement is stable, and the movement accuracy does not affect the shape and position accuracy. The cylindricity of the processed cylinder can reach 0.1¦Ìm.

    To improve the mechanical properties of the surface of the workpiece: The grinding heat is small with surface grinding machine, the deformation of the workpiece is small, the metamorphic layer is thin, and there will be no micro-cracks on the surface. At the same time, it can reduce the surface friction coefficient and improve wear resistance and corrosion resistance. There is residual compressive stress on the surface of the ground part, which is conducive to improving the fatigue strength of the surface of the workpiece.

Published by Sep 28, 2021 Source :

Further reading

You might also be interested in ...

Headline
Knowledge
Analysis of Green Plastic Manufacturing
With the rise of environmental awareness and the global push for sustainable development goals, traditional plastics face increasing environmental pressure due to their challenges in decomposition and recycling. In response, the manufacturing industry is actively developing and applying eco-friendly plastic materials to build green manufacturing systems. This article explores the types, characteristics, and industrial applications of eco-friendly plastics to assist industry transformation and upgrading.
Headline
Knowledge
Dry Cutting vs. Wet Cutting: The Balance of Energy Saving, Cost, and Quality
In CNC machining, the choice of cooling method is not simply a technical preference but a multi-faceted trade-off involving cost control, machining quality, tool life, and production line stability. Both dry cutting and wet cutting have their advantages and limitations. To stand out in the fiercely competitive market, companies must shift from pursuing the ¡°theoretically optimal¡± to the ¡°contextually optimal¡± solution.
Headline
Knowledge
The Unsung Heroes of Cutting Tool Coatings: Performance Differences from TiN to DLC
In CNC machining, cutting tool coatings are a critical yet ¡°invisible¡± factor in boosting production efficiency and reducing costs. Although coating thickness is only a few microns, it significantly enhances tool hardness and wear resistance, optimizes heat dissipation, and improves cutting speed and machining accuracy. From classic Titanium Nitride (TiN) to advanced Diamond-Like Carbon (DLC) coatings, different coating materials not only offer varying hardness and heat resistance but also affect tool lifespan and machining adaptability.
Headline
Knowledge
Comprehensive Overview of Plastic Processing Methods: Mastering Key Technologies and Applications
Plastic products play an indispensable role in modern manufacturing, and various plastic processing techniques are crucial for achieving product diversity and efficient production. The following introduces five common and important plastic processing methods, helping readers gain a thorough understanding of their principles, features, and application scopes.
Headline
Knowledge
What is Liquid Injection Molding?
Liquid Injection Molding (LIM) is a manufacturing process that involves injecting liquid silicone rubber (LSR) into precision molds, followed by heating and curing to form high-precision, complex plastic components. Compared to traditional thermoplastic injection molding, LIM offers superior accuracy and the capability to produce more intricate shapes, making it especially suitable for applications demanding high performance and reliability.
Headline
Knowledge
Precision Mold Development and Manufacturing: The Core Technology of Modern Plastic Production
Precision molds form the foundation for the quality and efficiency of plastic part molding. In today¡¯s highly competitive manufacturing environment, the design and fabrication of molds directly impact a product¡¯s functional performance and market competitiveness. Excellent mold development requires not only precise engineering design but also the integration of advanced machining technologies and rigorous quality control to achieve efficient and stable mass production.
Headline
Knowledge
The Magical Journey of Milk Tea
Pouring smooth, rich milk into robust black tea with a unique aroma, then stirring it all together, gets you a cup of milk tea. But do you really know what defines milk tea, and how it differs from the milk tea we enjoy today?
Headline
Knowledge
The Connection Between Textiles and Biomimicry: A Fabric Revolution Inspired by Nature
Lotus leaves after rain shed water droplets without a trace; delicate spider silk is stronger than steel. These are not coincidences but exquisite designs evolved by nature over millions of years. The textile industry is learning from this great designer¡ªnature itself¡ªthrough biomimicry, transforming natural wisdom into fabrics that perform better and are more eco-friendly.
Headline
Knowledge
What Is a CNC Machine Tool? Unveiling the Secret Behind Modern Factories¡¯ High Efficiency
CNC (Computer Numerical Control) machine tools are automated devices that control machining processes through computer programming. Known for their high efficiency, precision, and stability, they are widely used across industries such as aerospace, automotive, mold making, electronics, medical, and energy. With the rise of Industry 4.0 and smart manufacturing, CNC technology continues to evolve toward multi-axis machining, intelligent control, remote monitoring, and integrated processes. This widespread adoption not only enhances manufacturing performance but also reshapes the workforce, shifting traditional manual skills toward digital operation and system integration¡ªbringing greater production flexibility and competitiveness to businesses.
Headline
Knowledge
The Resistor's Role in Modern Manufacturing
A resistor is a fundamental and indispensable component in electronic circuits. Its physical design is not arbitrary; rather, it is closely linked to its function, power requirements, and manufacturing method. Every detail, from its size and material to its structure, reveals its intended application. Understanding a resistor's form is like reading its "user manual," helping us to apply it more precisely.
Headline
Knowledge
The Manufacturing Process of Construction Screws: An Overview
The manufacturing of construction screws involves multiple carefully controlled steps to ensure high quality and durability. It begins with selecting suitable raw materials, usually low-carbon steel wire, followed by cold heading to form the screw head. Threads are then created through thread rolling, which preserves the metal¡¯s strength better than cutting. Heat treatment enhances hardness and toughness, while surface coatings protect against corrosion. Rigorous quality control is maintained throughout the process, and finally, the screws are packaged for safe transportation. Each stage is crucial to producing reliable screws capable of withstanding tough conditions in construction and industrial use.
Headline
Knowledge
The Transformation and Innovation of Flexible Magnetic Materials in Educational Applications
In today's era where digital education and maker learning are prevalent, the design of teaching tools is no longer limited to static displays but is moving toward interactivity, modularity, and creative expansion. Flexible magnetic materials¡ªespecially flexible magnets that can be cut, printed, and adhered¡ªare gradually becoming indispensable media in the new generation of educational settings. These materials can be flexibly applied to puzzle teaching aids, display boards, and modular signage systems. Moreover, due to their ease of processing and cost-effectiveness, they widely support hands-on practice and creative activities in STEAM education (Science, Technology, Engineering, Arts, and Mathematics).
Agree