91ÊÓÆµ¹ÙÍø

What is Chip Formation?
Knowledge

What is Chip Formation?

In the chip formation process, materials are cut through mechanical means by using tools like milling cutters, saws, and lathes. It is an integral part of the engineering of developing machines and cutting tools.
Published: Jan 03, 2023
What is Chip Formation?

What is Chip Formation?

Chip formation is part of the process of mechanically removing material using tools such as saws, lathes, and milling cutters. Especially when cutting metal with the new high-speed steel tools, which are faster and more powerful.

Chip formation during machining:

Proper chip formation and evacuation ensure that the cutting process proceeds undisturbed, maintains operator safety, and does not damage the machine tool and workpiece. During machining, the removed material is plastically deformed and sheared in the shear plane and exits as long or short chips depending on the workpiece material. Processing consumes most of its energy in this shear zone. When processing incompressible materials, the material deforms in the shear plane without volume change. The deformation is assumed to occur as simple shear, and a stack of layers of material is placed in the material to be chipped. Each layer is parallel to the shear plane. Chip formation can be exemplified by a shearing process of a material layer.

What Chip Classifications are There?

The type of chip formed depends on many factors, including tool and material. The major factors are the angle formed by the tool facets and the angle between that angle and the surface. The sharpness of a cutting tool generally does not define the type of chip, but rather a clear distinction between the quality and type of chips. Dull tools produce degraded chips that are large, tear, and vary from one form to another, often leaving a poor-quality finish that signifies variation.

  • Type I chip:
    Type I chips form when the material splits before the cutting edge, perpendicular to the surface due to some upward wedging action of the tool exceeding the tensile strength of the material. As such, they are especially important in fibrous materials, where individual fibers are strong, but can be pried open relatively. Type I chips are formed when cutting tools with shallow cutting angles. Type I chips may form long, continuous chips whose size is limited only by the length of the cut. This is ideal chip formation for shavings, especially those produced by a well-adjusted flat surface with finely adjusted nozzles.
  • Type II chip:
    Type II chips are formed when the wedge shape of the cutter corners creates a shear force. Material fails along the short angle plane, starting at the apex of the tool edge, diagonally up and forward to the surface. The material deforms along this line, forming chips that curl upward. These chips are usually formed by intermediate cutting corners. Type II chips may form in ductile materials. Type II chips may form long, continuous chips.
  • Type III chip:
    Compressive failure of Type III chip-forming material, before a relatively obtuse cutting angle, approaches 90¡ã. In some brittle or non-ductile materials, this may form acceptable swarf, usually fine dust. This chip consists of routers. It is formed by woodworking scrapers, although when properly sharpened and used they form a type III chip so thin that it looks like a well-formed type II chip. Their debris is thin enough and the compression failure volume is small enough to serve as a Type II well-defined shear plane.

The Basic Form of Chips:

  • Discontinuous or Segmental Chips:
    Indicates that the chip breaks into small pieces after it breaks away from the front of the tool. This is more likely to be the case with more brittle materials, such as cast iron or bronze. Because the chip is broken after it is formed, it will not exert pressure on the tool surface, and the remaining irregular surface can be easily cut flat by the blade, so a smoother surface can be obtained, and because the pressure on the tool surface is small, the wear it is small, so the tool life is longer. Non-continuous chipping of materials with a higher coefficient of friction or higher ductility is indicative of poor cutting conditions.
  • Continuous Chips:
    For materials with low ductility and low coefficient of friction, during cutting, the metal continuously deforms and flows on the tool surface, and acts stably on the tool. Therefore, no matter in terms of surface finish or tool life, it is a reasonable chip, and it is convenient for the analysis of cutting force.
  • Continuous Chip with Built-Up-Edge:
    BUE For materials with high flexibility and high friction coefficient, during the cutting process, due to the pressure between the very high friction coefficient and chips, there are some particles bonded on the tool surface. When the cutting continues, the bonding The more material there is, the more it accumulates to an appropriate height, it will be lost with the chips, or part of it will be embedded in the working surface. Since this effect occurs periodically, the smoothness of the machined surface is much lower than that of the continuous chip. This phenomenon can be reduced by reducing the chip thickness and increasing the inclination angle.

Chip Formation is Applied in the ISO System:

  • ISO group P (steels) includes materials with fairly high ductility and long chipping tendency. They require proper precautions to keep chips in an acceptable shape and length.
  • ISO groups K (cast materials) and H (hard steels) include low-ductility materials that produce short chips. This simplifies chip control.
  • ISO groups M (stainless steels), S (super alloys), and N (non-ferrous materials) include materials with relatively low ductility but significant adhesion. These materials form so-called build-up chips.
Published by Jan 03, 2023

Further reading

You might also be interested in ...

Headline
Knowledge
The Birth of a Fabric: The Science and Craft of Textiles
Although fabric may seem like an ordinary item in our daily lives, its creation involves complex and highly precise processes. From cotton grown in the fields to synthetic fibers produced in factories, each raw material carries unique properties and purposes. Whether it¡¯s the light, airy touch of a shirt or the high protective performance of medical textiles, behind it lies a production chain that spans agriculture, chemistry, and engineering.
Headline
Knowledge
Exploring Major Types of Plastics and Their Properties
Plastic materials are indispensable raw materials in modern manufacturing. Based on their chemical structures and processing characteristics, plastics are mainly classified into two categories: thermoplastics and thermosets. Understanding the properties of these two types aids in material selection and product design, thereby enhancing manufacturing efficiency and product performance.
Headline
Knowledge
Analysis of Green Plastic Manufacturing
With the rise of environmental awareness and the global push for sustainable development goals, traditional plastics face increasing environmental pressure due to their challenges in decomposition and recycling. In response, the manufacturing industry is actively developing and applying eco-friendly plastic materials to build green manufacturing systems. This article explores the types, characteristics, and industrial applications of eco-friendly plastics to assist industry transformation and upgrading.
Headline
Knowledge
Key Parameters for Manufacturing High-Quality Plastic Products
Plastic materials are widely used across various industries due to their lightweight, ease of molding, and versatile properties. 91ÊÓÆµ¹ÙÍøever, different types of plastics exhibit distinct mechanical, thermal, chemical, and dimensional stability characteristics, which directly affect the final product¡¯s performance and service life. Therefore, understanding the performance indicators of plastics is fundamental to designing and manufacturing high-quality plastic products.
Headline
Knowledge
Dry Cutting vs. Wet Cutting: The Balance of Energy Saving, Cost, and Quality
In CNC machining, the choice of cooling method is not simply a technical preference but a multi-faceted trade-off involving cost control, machining quality, tool life, and production line stability. Both dry cutting and wet cutting have their advantages and limitations. To stand out in the fiercely competitive market, companies must shift from pursuing the ¡°theoretically optimal¡± to the ¡°contextually optimal¡± solution.
Headline
Knowledge
The Unsung Heroes of Cutting Tool Coatings: Performance Differences from TiN to DLC
In CNC machining, cutting tool coatings are a critical yet ¡°invisible¡± factor in boosting production efficiency and reducing costs. Although coating thickness is only a few microns, it significantly enhances tool hardness and wear resistance, optimizes heat dissipation, and improves cutting speed and machining accuracy. From classic Titanium Nitride (TiN) to advanced Diamond-Like Carbon (DLC) coatings, different coating materials not only offer varying hardness and heat resistance but also affect tool lifespan and machining adaptability.
Headline
Knowledge
Comprehensive Overview of Plastic Processing Methods: Mastering Key Technologies and Applications
Plastic products play an indispensable role in modern manufacturing, and various plastic processing techniques are crucial for achieving product diversity and efficient production. The following introduces five common and important plastic processing methods, helping readers gain a thorough understanding of their principles, features, and application scopes.
Headline
Knowledge
Fabric Knowledge Base: A Guide to Fiber Applications, From Beginner to Expert Selection
Textile fiber is the fundamental element that determines fabric performance and product suitability. Whether you are a designer, manufacturer, or consumer, understanding the unique characteristics of different fibers and their suitable applications is crucial for precise material selection and informed purchasing. This article will systematically introduce the applications of major natural and synthetic fibers and explain how blending them can overcome the limitations of single fibers, providing versatile functional solutions and helping you build a comprehensive knowledge base of textile applications.
Headline
Knowledge
What is Liquid Injection Molding?
Liquid Injection Molding (LIM) is a manufacturing process that involves injecting liquid silicone rubber (LSR) into precision molds, followed by heating and curing to form high-precision, complex plastic components. Compared to traditional thermoplastic injection molding, LIM offers superior accuracy and the capability to produce more intricate shapes, making it especially suitable for applications demanding high performance and reliability.
Headline
Knowledge
Precision Mold Development and Manufacturing: The Core Technology of Modern Plastic Production
Precision molds form the foundation for the quality and efficiency of plastic part molding. In today¡¯s highly competitive manufacturing environment, the design and fabrication of molds directly impact a product¡¯s functional performance and market competitiveness. Excellent mold development requires not only precise engineering design but also the integration of advanced machining technologies and rigorous quality control to achieve efficient and stable mass production.
Headline
Knowledge
The Magical Journey of Milk Tea
Pouring smooth, rich milk into robust black tea with a unique aroma, then stirring it all together, gets you a cup of milk tea. But do you really know what defines milk tea, and how it differs from the milk tea we enjoy today?
Headline
Knowledge
The Connection Between Textiles and Biomimicry: A Fabric Revolution Inspired by Nature
Lotus leaves after rain shed water droplets without a trace; delicate spider silk is stronger than steel. These are not coincidences but exquisite designs evolved by nature over millions of years. The textile industry is learning from this great designer¡ªnature itself¡ªthrough biomimicry, transforming natural wisdom into fabrics that perform better and are more eco-friendly.
Agree