91ÊÓÆµ¹ÙÍø

What is Brain-Computer Interface (BCI)? - Relying on two-way learning between the human brain and computers
Knowledge

What is Brain-Computer Interface (BCI)? - Relying on two-way learning between the human brain and computers

The core value of the brain-computer interface: Communication without action. People can communicate with the outside world and even control surrounding objects through the will of the brain without the need to move any part of the body.
Published: Feb 18, 2022
What is Brain-Computer Interface (BCI)? - Relying on two-way learning between the human brain and computers

What is a brain-computer interface?

The brain-computer interface uses brainwave electrical signals to communicate between humans and machines, allowing patients to control electric devices such as wheelchairs or robotic arms which can be used to grab objects. After the user visually observes the surrounding environment, the user concentrates on the action to be performed, and the generated electroencephalogram (EEG) is received by a non-invasive electrode patch placed on the surface of the head, which is then transmitted to the computer software. The computer processes the EEG signal generated, extracting the information received, decoding it, and performing the desired action on the object. The brain-computer interface provides the physically handicapped person with a way of using their thoughts to control the computer, replacing the keyboard, mouse, and voice input methods, all of which require actual movement of the body.

91ÊÓÆµ¹ÙÍø does a brain-computer interface work?

Brain-computer interface technology can directly detect activities in the brain, including concentration, thinking, stress, etc. There are many potential benefits, but also risks for abuse. Software can adjust light sources and play stress-relieving music, but imagine a supervisor who monitors the concentration of employees, or even uses brain commands to control the stress level of employees.

Using the brain to directly control computers and machinery is an example of the use of a brain-computer interface. Brain-computer interfaces measure brain activity, extract characteristics of specific activities, and convert these characteristics into digital output signals that replace, restore, enhance, supplement or improve human function. The advantage of this is that it is free from the requirements of most interactive interfaces for sensory reception such as vision and hearing, and physical participation, so that more disabled people can participate in their use without burden. More functions of BCI are still in the experimental development stage, but the main application at present is to replace lost functions, such as communication and mobility.

In recent years, related research on the brain-computer interface has mainly focused on the acquisition of signals, as well as the processing and calculation of signals. EEG signals are collected by wireless dry electrodes attached to the scalp. Compared with connections to the cerebral cortex which collect information during surgery, external dry electrodes have the advantages of low invasiveness and a simple operation procedure. Research has led to algorithms that identify EEG signals and extract their features, reduce noise interference, adjust the actions of control devices, and improve reliability.

Since the measured EEG signal is the result of the superposition of the firing of multiple neurons, researchers must analyze the brainwave characteristics of the user's brain when performing different tasks, and find clues that can help interpret the user's intention. Among them, visual evoked-potential (VEP) and event-related potential (ERP) implies many brain wave features are related to brain activity and function. The independent component analysis can effectively separate the electromyographic signal (EMG) generated by blinking and background electromagnetic interference. With the development of machine learning technology, algorithms that can identify key EEG waveforms can more accurately analyze EEG signals and understand the user's will.

Three elements of the brain-computer interface: Signal Acquisition, Feature Extraction, Translation Algorithm.

Applications of brain-computer interface:

  • Assist in the loss of physical function due to injury or disease, assist in communication or replace wheelchair operation.
  • Restore the function of the body. Such as stimulating the muscles and nerves of paralyzed patients to restore bladder function.
  • Improve physical function. Such as the rehabilitation of stroke patients.
  • ?Increase mental function. Such as detecting stress or improving poor concentration of students by detecting their brain activity and monitoring their mental state.
  • As a research tool for brain function.

Industries where the brain-computer interface is applied include communication and control for health and neurofeedback, assistive technology and home control, security and protection, entertainment and games, finance, scientific research, etc. It is expected that with the development of this technology, in addition to enhancing the value of the IT industry, it can help improve and enhance medical care services.

Published by Feb 18, 2022 Source :

Further reading

You might also be interested in ...

Headline
Knowledge
The Birth of a Fabric: The Science and Craft of Textiles
Although fabric may seem like an ordinary item in our daily lives, its creation involves complex and highly precise processes. From cotton grown in the fields to synthetic fibers produced in factories, each raw material carries unique properties and purposes. Whether it¡¯s the light, airy touch of a shirt or the high protective performance of medical textiles, behind it lies a production chain that spans agriculture, chemistry, and engineering.
Headline
Knowledge
Exploring Major Types of Plastics and Their Properties
Plastic materials are indispensable raw materials in modern manufacturing. Based on their chemical structures and processing characteristics, plastics are mainly classified into two categories: thermoplastics and thermosets. Understanding the properties of these two types aids in material selection and product design, thereby enhancing manufacturing efficiency and product performance.
Headline
Knowledge
Analysis of Green Plastic Manufacturing
With the rise of environmental awareness and the global push for sustainable development goals, traditional plastics face increasing environmental pressure due to their challenges in decomposition and recycling. In response, the manufacturing industry is actively developing and applying eco-friendly plastic materials to build green manufacturing systems. This article explores the types, characteristics, and industrial applications of eco-friendly plastics to assist industry transformation and upgrading.
Headline
Knowledge
Key Parameters for Manufacturing High-Quality Plastic Products
Plastic materials are widely used across various industries due to their lightweight, ease of molding, and versatile properties. 91ÊÓÆµ¹ÙÍøever, different types of plastics exhibit distinct mechanical, thermal, chemical, and dimensional stability characteristics, which directly affect the final product¡¯s performance and service life. Therefore, understanding the performance indicators of plastics is fundamental to designing and manufacturing high-quality plastic products.
Headline
Knowledge
Dry Cutting vs. Wet Cutting: The Balance of Energy Saving, Cost, and Quality
In CNC machining, the choice of cooling method is not simply a technical preference but a multi-faceted trade-off involving cost control, machining quality, tool life, and production line stability. Both dry cutting and wet cutting have their advantages and limitations. To stand out in the fiercely competitive market, companies must shift from pursuing the ¡°theoretically optimal¡± to the ¡°contextually optimal¡± solution.
Headline
Knowledge
The Unsung Heroes of Cutting Tool Coatings: Performance Differences from TiN to DLC
In CNC machining, cutting tool coatings are a critical yet ¡°invisible¡± factor in boosting production efficiency and reducing costs. Although coating thickness is only a few microns, it significantly enhances tool hardness and wear resistance, optimizes heat dissipation, and improves cutting speed and machining accuracy. From classic Titanium Nitride (TiN) to advanced Diamond-Like Carbon (DLC) coatings, different coating materials not only offer varying hardness and heat resistance but also affect tool lifespan and machining adaptability.
Headline
Knowledge
Comprehensive Overview of Plastic Processing Methods: Mastering Key Technologies and Applications
Plastic products play an indispensable role in modern manufacturing, and various plastic processing techniques are crucial for achieving product diversity and efficient production. The following introduces five common and important plastic processing methods, helping readers gain a thorough understanding of their principles, features, and application scopes.
Headline
Knowledge
Fabric Knowledge Base: A Guide to Fiber Applications, From Beginner to Expert Selection
Textile fiber is the fundamental element that determines fabric performance and product suitability. Whether you are a designer, manufacturer, or consumer, understanding the unique characteristics of different fibers and their suitable applications is crucial for precise material selection and informed purchasing. This article will systematically introduce the applications of major natural and synthetic fibers and explain how blending them can overcome the limitations of single fibers, providing versatile functional solutions and helping you build a comprehensive knowledge base of textile applications.
Headline
Knowledge
What is Liquid Injection Molding?
Liquid Injection Molding (LIM) is a manufacturing process that involves injecting liquid silicone rubber (LSR) into precision molds, followed by heating and curing to form high-precision, complex plastic components. Compared to traditional thermoplastic injection molding, LIM offers superior accuracy and the capability to produce more intricate shapes, making it especially suitable for applications demanding high performance and reliability.
Headline
Knowledge
Precision Mold Development and Manufacturing: The Core Technology of Modern Plastic Production
Precision molds form the foundation for the quality and efficiency of plastic part molding. In today¡¯s highly competitive manufacturing environment, the design and fabrication of molds directly impact a product¡¯s functional performance and market competitiveness. Excellent mold development requires not only precise engineering design but also the integration of advanced machining technologies and rigorous quality control to achieve efficient and stable mass production.
Headline
Knowledge
The Magical Journey of Milk Tea
Pouring smooth, rich milk into robust black tea with a unique aroma, then stirring it all together, gets you a cup of milk tea. But do you really know what defines milk tea, and how it differs from the milk tea we enjoy today?
Headline
Knowledge
The Connection Between Textiles and Biomimicry: A Fabric Revolution Inspired by Nature
Lotus leaves after rain shed water droplets without a trace; delicate spider silk is stronger than steel. These are not coincidences but exquisite designs evolved by nature over millions of years. The textile industry is learning from this great designer¡ªnature itself¡ªthrough biomimicry, transforming natural wisdom into fabrics that perform better and are more eco-friendly.
Agree