91Ƶ

What is a Work holding System and its Function?
Knowledge

What is a Work holding System and its Function?

Work holding system with reduced setup time and process variability.
Published: Aug 22, 2022
What is a Work holding System and its Function?

What is a Work holding System and its Function?

Clamping element systems are process-standard clamping elements. Straight clamps belong to the so-called mechanical clamping devices, also commonly referred to as clamping jaws. The work holding system consists of vice, a base, and amount. Straight clamps are used in many applications in a variety of industries, such as for holding workpieces on equipment. Designed to maximize clamping force on three-, four- and five-axis machining centers designed to reduce setup time and process variability. Work holding fixtures are designed with a compact, quick-change modular design for accuracy and repeatability.

91Ƶ can the Workpiece Clamping System Meet the Five-axis Machining Requirements?

For 5-axis machining, the problem with work holding is getting enough access to the part, and the increasing use of 5-axis machining means that other process components, such as work holding, need to be evaluated and clearly understood the function.

  1. Clamping completely from below the workpiece:
    For different parts, the correct choice of workpiece clamping device may be the key to fully utilizing the automatic production capacity of five-axis machining. This work holding system, which was designed to reduce setup time, can now be used in 5-axis machining, not because it enables quick-change clamping, but because it provides a way to clamp parts entirely from below.
    91Ƶ to adequately contact the part is a problem for part clamping for 5-axis machining. A standard vise covers the sides of the part, and a short vise for 5-axis machining increases the side exposure, but can only clamp along the lower edge of the part. Even custom fixtures for five-axis machining projects have issues that can affect the tool or spindle housing as the entire part and fixture rotate within the work area. 91Ƶever, the method of clamping only the underside of the part can almost hide the workpiece holding device, and the workpiece itself will not cause any interference with the device. The system only needs to use the holes already in the part or add the holes needed to hold the knob to achieve this clamping. The clamping method using the knob and the workpiece receiver makes the system modular and can be applied to parts with uneven bottoms.
  2. Finishing with only five axes:
    Generally, pneumatic clamping is more commonly used, but the workpiece receiving device used in five-axis machining adopts mechanical clamping, which can avoid the danger of entangling the air pipe during the five-axis motion. In this case, the quick-change function of the system can show its advantages even more. Using this workpiece holder and workpiece receiver in multiple machining centers allows roughing to be performed on a lower-cost 3-axis machine tool. The workpiece is taken out of the workpiece receiving device group of the three-axis machine tool, and then quickly transferred to the workpiece receiving device of the five-axis machine tool and clamped, so that the five-axis machine tool can only be used for machining workpieces that require finishing.
  3. Dovetail part clamping:
    Five-axis technology combined with fifth-axis multi-part machining module technology for dovetail part clamping reduces the number of setups required to machine complex parts. Started with 3-axis vertical machining centers, to HMCs with dual 400 mm pallets and standard multi-part machining modules that can hold multiple parts to increase throughput and minimize workpiece contact during complex parts number of times.
    A dovetail connection between workpiece and fixture provides a stronger and more secure interface. To use a dovetail work holding fixture, first machine a 60 dovetail bar on the bottom of the part blank. The blank is then inserted into a jig with jaws provided with angled grooves that mate and engage with the blank dovetail. The strength of the joint requires only a little extra blank at the bottom of the blank to accommodate the dovetail strips, which are removed from the machined workpiece during subsequent milling or laying operations. The resulting machining process for HMC in the factory, suitable for batch production of 200 parts of the same size, is more efficient than running on multiple VMCs.
  4. Five-axis multi-part machining module:
    The five-axis multi-part machining module takes up less space in the work area, has two indexers on the side, and has a flat surface that can accommodate standard fixtures. Each indexer has a dovetail work holding fixture, and the indexer rotation accuracy and repeatability are 10 degrees and 5 degrees, respectively. The fifth-axis multi-part machining module features two indexers and a flat area on either side for standard fixtures. In addition to clamping strength, the dovetail work holding port provides the machine tool spindle with easier access to the five sides of the part because there are essentially no fixing elements to avoid. This clearance plus prop positioning perpendicular to the machine tool Z axis makes it possible to use shorter, more rigid cutters.
  5. Block parts processing:
    Block parts are the first to be machined using the five-axis multi-part machining module, which previously required 9 operations on multiple VMCs. Because some true position tolerances are as low as 0.001 and it is touched in many runs on many machine tools, the part scrap rate is 30%. Now it is processed with a five-axis multi-part machining module, 4 pieces per cycle, and the scrap rate is almost zero.
    Decisions must be made in machining to identify the surface to incorporate the dovetail strips for each job. After laying, it is convenient if this face requires the least post-processing operations, but it is necessary to select the face of the datum where the key features are located. Rather than finish machining each part on the indexer before moving on to the next, the HMC is programmed to machine each part in stages. The same operation is then performed on all 4 parts with the same props before changing the tool so that all parts can be followed up in the next operation, the purpose here is to minimize the number of equipment changes to shorten the overall cycle time.
Published by Aug 22, 2022 Source :

Further reading

You might also be interested in ...

Headline
Knowledge
The Distinction Between Yogurt and Probiotics
When you enjoy a sweet cup of yogurt every morning, do you believe you've provided your gut with a sufficient dose of good bacteria? Many people often equate yogurt with probiotics, thinking they are one and the same. 91Ƶever, from the perspective of their product nature and function, yogurt is more like a delicious "fermented beverage," while probiotics are "functional health supplements" designed to address specific health concerns. This article will break down the fundamental differences between the two, helping you become a smarter consumer.
Headline
Knowledge
The Birth of a Fabric: The Science and Craft of Textiles
Although fabric may seem like an ordinary item in our daily lives, its creation involves complex and highly precise processes. From cotton grown in the fields to synthetic fibers produced in factories, each raw material carries unique properties and purposes. Whether its the light, airy touch of a shirt or the high protective performance of medical textiles, behind it lies a production chain that spans agriculture, chemistry, and engineering.
Headline
Knowledge
Exploring Major Types of Plastics and Their Properties
Plastic materials are indispensable raw materials in modern manufacturing. Based on their chemical structures and processing characteristics, plastics are mainly classified into two categories: thermoplastics and thermosets. Understanding the properties of these two types aids in material selection and product design, thereby enhancing manufacturing efficiency and product performance.
Headline
Knowledge
Analysis of Green Plastic Manufacturing
With the rise of environmental awareness and the global push for sustainable development goals, traditional plastics face increasing environmental pressure due to their challenges in decomposition and recycling. In response, the manufacturing industry is actively developing and applying eco-friendly plastic materials to build green manufacturing systems. This article explores the types, characteristics, and industrial applications of eco-friendly plastics to assist industry transformation and upgrading.
Headline
Knowledge
Key Parameters for Manufacturing High-Quality Plastic Products
Plastic materials are widely used across various industries due to their lightweight, ease of molding, and versatile properties. 91Ƶever, different types of plastics exhibit distinct mechanical, thermal, chemical, and dimensional stability characteristics, which directly affect the final products performance and service life. Therefore, understanding the performance indicators of plastics is fundamental to designing and manufacturing high-quality plastic products.
Headline
Knowledge
Dry Cutting vs. Wet Cutting: The Balance of Energy Saving, Cost, and Quality
In CNC machining, the choice of cooling method is not simply a technical preference but a multi-faceted trade-off involving cost control, machining quality, tool life, and production line stability. Both dry cutting and wet cutting have their advantages and limitations. To stand out in the fiercely competitive market, companies must shift from pursuing the theoretically optimal to the contextually optimal solution.
Headline
Knowledge
The Unsung Heroes of Cutting Tool Coatings: Performance Differences from TiN to DLC
In CNC machining, cutting tool coatings are a critical yet invisible factor in boosting production efficiency and reducing costs. Although coating thickness is only a few microns, it significantly enhances tool hardness and wear resistance, optimizes heat dissipation, and improves cutting speed and machining accuracy. From classic Titanium Nitride (TiN) to advanced Diamond-Like Carbon (DLC) coatings, different coating materials not only offer varying hardness and heat resistance but also affect tool lifespan and machining adaptability.
Headline
Knowledge
Comprehensive Overview of Plastic Processing Methods: Mastering Key Technologies and Applications
Plastic products play an indispensable role in modern manufacturing, and various plastic processing techniques are crucial for achieving product diversity and efficient production. The following introduces five common and important plastic processing methods, helping readers gain a thorough understanding of their principles, features, and application scopes.
Headline
Knowledge
Fabric Knowledge Base: A Guide to Fiber Applications, From Beginner to Expert Selection
Textile fiber is the fundamental element that determines fabric performance and product suitability. Whether you are a designer, manufacturer, or consumer, understanding the unique characteristics of different fibers and their suitable applications is crucial for precise material selection and informed purchasing. This article will systematically introduce the applications of major natural and synthetic fibers and explain how blending them can overcome the limitations of single fibers, providing versatile functional solutions and helping you build a comprehensive knowledge base of textile applications.
Headline
Knowledge
What is Liquid Injection Molding?
Liquid Injection Molding (LIM) is a manufacturing process that involves injecting liquid silicone rubber (LSR) into precision molds, followed by heating and curing to form high-precision, complex plastic components. Compared to traditional thermoplastic injection molding, LIM offers superior accuracy and the capability to produce more intricate shapes, making it especially suitable for applications demanding high performance and reliability.
Headline
Knowledge
Precision Mold Development and Manufacturing: The Core Technology of Modern Plastic Production
Precision molds form the foundation for the quality and efficiency of plastic part molding. In todays highly competitive manufacturing environment, the design and fabrication of molds directly impact a products functional performance and market competitiveness. Excellent mold development requires not only precise engineering design but also the integration of advanced machining technologies and rigorous quality control to achieve efficient and stable mass production.
Headline
Knowledge
The Magical Journey of Milk Tea
Pouring smooth, rich milk into robust black tea with a unique aroma, then stirring it all together, gets you a cup of milk tea. But do you really know what defines milk tea, and how it differs from the milk tea we enjoy today?
Agree