91ÊÓÆµ¹ÙÍø

What Exactly is A Planer?
Knowledge

What Exactly is A Planer?

In addition to the use of hand tools, the processing of metal workpieces is mainly achieved by the machine tools, such as lathes, planers, milling machines, grinders, boring machines, drilling machines, etc. These machines have different performances to match the job requirements. In recent years, various industrial advanced countries have used machines to replace manpower, making the application of machine tools more extensive and important. Although the processing precision of milling machines and grinding machines is superior to that of planers, the price is more expensive than that of planers. Generally, planers are still used for many initial processing jobs in small and medium-sized factories. So, what exactly is a planer?
Published: Aug 30, 2022
What Exactly is A Planer?

The Definition of a Planer

A planer is a linear motion machine tool that uses a planer to plan the plane, groove or forming surface of a workpiece. Using planer processing, the tool is simpler, but the productivity is low (except for processing long and narrow planes), so it is mainly used for single-piece, small batch production and machine repair workshops, and is often replaced by milling machines in mass production.

The Classification of Planers

There are many types and models of planers. According to its structural characteristics, it can be roughly divided into:

Shaper

The bull head planer is a planer used for planning medium and small workpieces, and the working length is generally not more than 1 m. The workpiece is clamped on the adjustable worktable or in the flat-nose pliers on the worktable, and the planning process is carried out by the linear reciprocating motion (cutting motion) of the planer and the intermittent movement (feeding motion) of the worktable.

According to the length of the workpiece that can be processed, the planer can be divided into three types: large, medium and small: the small planer can process workpieces with a length of less than 400mm, such as the B635-1 planer; the medium-sized planer can process the length of 400~600mm. The workpiece, such as the B650 type planer; the large-scale planer can process workpieces with a length of 400~1000mm, such as the B665 and B69O type planers.

Gantry Planer

It is a planer used to plan large workpieces. Some gantry planers can process workpieces with a length of tens of meters or even more than tens of meters. For example, the B2063 gantry planer has a worktable area of 6.3m¡Á20m. Several planers can be clamped on the workbench at a time, and several planning knives can be used for planning at the same time, so the productivity is relatively high. The gantry planer uses the direct reciprocating motion (cutting) of the worktable and the intermittent movement (feeding motion) of the planer to carry out planning processing.

The gantry planer mainly processes large workpieces or multiple workpieces at the same time. Compared with the bull head planer, from the structural point of view, its shape is large, the structure is complex, and the rigidity is good. From the point of view of the machine tool movement, the main motion of the gantry planer is the linear reciprocating motion of the worktable, and the feed motion is the horizontal direction of the planer. Or vertical interval motion, which is the exact opposite of the motion of a planer. The gantry planer is driven by a DC motor, with stepless speed regulation and smooth movement. All tool holders of the planer can be translated horizontally and vertically. The gantry planer is mainly used to process large planes, especially long and narrow planes. Generally, the width of the workpiece that can be planed is 1 meter and the length is more than 3 meters. The main parameter of the gantry planer is the maximum planning width.

The tool holder on the beam of the gantry planer can perform lateral feed movement on the beam guide to plan the horizontal surface of the workpiece; the side tool holder on the column can perform vertical feed movement along the column guide to plan the vertical surface. The tool holder can also be deflected at an angle to plan bevels. The beam can be lifted up and down along the column guide to adjust the relative position of the tool and the workpiece. The gantry planer is mainly used to process planes or grooves on large parts, or to process multiple medium-sized parts at the same time, especially suitable for the processing of narrow and long planes. The workpieces on the gantry planer are generally pressed with platen bolts. On the gantry planer, there is a complex electrical equipment and routing system, and the movement of the worktable can be adjusted stepless. The company can manufacture and process various non-standard models of gantry planers, CNC floor boring and milling machines, heavy-duty horizontal milling machines, ordinary double-column vertical lathes, heavy-duty horizontal lathes, CNC fixed beam gantry boring and milling machines, and gantry moving beam boring machines according to customer requirements. Milling machine, precision gantry boring and milling machine, single-arm planer, single-arm planer and milling machine, the equipment configuration can be arbitrarily matched, and the planer head, milling head, grinding head and horizontal grinding head can be configured according to user needs.

Slotting Machine

Slotting machine, also known as vertical planer, is mainly used to machine the inner surface of the workpiece. Its structure is almost exactly the same as that of a bull head planer. The main difference is that the slotting tool of the slotting machine performs linear reciprocating motion (cutting motion) in the vertical direction. Do intermittent rotary feed motions on the circular room.

According to the different transmission modes, planers have two types: mechanical transmission and hydraulic transmission: planers, gantry planers and slotting machines with mechanical transmission; planers and slotting machines with hydraulic transmission.

Processing Characteristics of Planers

According to the cutting motion and specific processing requirements, the structure of the planer is simpler than that of the lathe and the milling machine, the price is lower, and the adjustment and the operation is also more convenient. The single-edged planer used is basically the same as the turning tool, with a simple shape and convenient manufacturing, sharpening and installation. The main motion of planning is reciprocating linear motion, and it is affected by inertial force when it is reversed. In addition, there is impact when the tool cuts in and out, which limits the increase of cutting speed. The length of the cutting edge that the single-edged planer actually participates in cutting is limited, and a surface often needs to be processed through multiple strokes, and the basic process time is long. When the planer returns to the stroke, no cutting is performed, and the processing is discontinuous, which increases the auxiliary time.

Therefore, planning is less productive than milling. 91ÊÓÆµ¹ÙÍøever, for the machining of long and narrow surfaces (such as rails, long grooves, etc.), and for multi-piece or multi-cut machining on a planer, planning can be more productive than milling. The planning accuracy can reach IT9~IT8, and the surface roughness Ra value is 3.2 ¦Ìm~1.6 ¦Ìm. When using wide-blade fine planning, that is, on a gantry planer, a wide-blade fine planer is used to cut a very thin layer of metal from the surface of the part at a very low cutting speed, large feed rate and small cutting depth, due to the cutting force. Therefore, the surface roughness Ra value of the parts can reach 1.6 ¦Ìm~0.4 ¦Ìm, and the straightness can reach 0.02 mm/m. Wide-blade fine planning can replace scraping, which is an advanced and effective method of finishing flat surfaces.

Published by Aug 30, 2022 Source :

Further reading

You might also be interested in ...

Headline
Knowledge
The Birth of a Fabric: The Science and Craft of Textiles
Although fabric may seem like an ordinary item in our daily lives, its creation involves complex and highly precise processes. From cotton grown in the fields to synthetic fibers produced in factories, each raw material carries unique properties and purposes. Whether it¡¯s the light, airy touch of a shirt or the high protective performance of medical textiles, behind it lies a production chain that spans agriculture, chemistry, and engineering.
Headline
Knowledge
Exploring Major Types of Plastics and Their Properties
Plastic materials are indispensable raw materials in modern manufacturing. Based on their chemical structures and processing characteristics, plastics are mainly classified into two categories: thermoplastics and thermosets. Understanding the properties of these two types aids in material selection and product design, thereby enhancing manufacturing efficiency and product performance.
Headline
Knowledge
Analysis of Green Plastic Manufacturing
With the rise of environmental awareness and the global push for sustainable development goals, traditional plastics face increasing environmental pressure due to their challenges in decomposition and recycling. In response, the manufacturing industry is actively developing and applying eco-friendly plastic materials to build green manufacturing systems. This article explores the types, characteristics, and industrial applications of eco-friendly plastics to assist industry transformation and upgrading.
Headline
Knowledge
Key Parameters for Manufacturing High-Quality Plastic Products
Plastic materials are widely used across various industries due to their lightweight, ease of molding, and versatile properties. 91ÊÓÆµ¹ÙÍøever, different types of plastics exhibit distinct mechanical, thermal, chemical, and dimensional stability characteristics, which directly affect the final product¡¯s performance and service life. Therefore, understanding the performance indicators of plastics is fundamental to designing and manufacturing high-quality plastic products.
Headline
Knowledge
Dry Cutting vs. Wet Cutting: The Balance of Energy Saving, Cost, and Quality
In CNC machining, the choice of cooling method is not simply a technical preference but a multi-faceted trade-off involving cost control, machining quality, tool life, and production line stability. Both dry cutting and wet cutting have their advantages and limitations. To stand out in the fiercely competitive market, companies must shift from pursuing the ¡°theoretically optimal¡± to the ¡°contextually optimal¡± solution.
Headline
Knowledge
The Unsung Heroes of Cutting Tool Coatings: Performance Differences from TiN to DLC
In CNC machining, cutting tool coatings are a critical yet ¡°invisible¡± factor in boosting production efficiency and reducing costs. Although coating thickness is only a few microns, it significantly enhances tool hardness and wear resistance, optimizes heat dissipation, and improves cutting speed and machining accuracy. From classic Titanium Nitride (TiN) to advanced Diamond-Like Carbon (DLC) coatings, different coating materials not only offer varying hardness and heat resistance but also affect tool lifespan and machining adaptability.
Headline
Knowledge
Comprehensive Overview of Plastic Processing Methods: Mastering Key Technologies and Applications
Plastic products play an indispensable role in modern manufacturing, and various plastic processing techniques are crucial for achieving product diversity and efficient production. The following introduces five common and important plastic processing methods, helping readers gain a thorough understanding of their principles, features, and application scopes.
Headline
Knowledge
Fabric Knowledge Base: A Guide to Fiber Applications, From Beginner to Expert Selection
Textile fiber is the fundamental element that determines fabric performance and product suitability. Whether you are a designer, manufacturer, or consumer, understanding the unique characteristics of different fibers and their suitable applications is crucial for precise material selection and informed purchasing. This article will systematically introduce the applications of major natural and synthetic fibers and explain how blending them can overcome the limitations of single fibers, providing versatile functional solutions and helping you build a comprehensive knowledge base of textile applications.
Headline
Knowledge
What is Liquid Injection Molding?
Liquid Injection Molding (LIM) is a manufacturing process that involves injecting liquid silicone rubber (LSR) into precision molds, followed by heating and curing to form high-precision, complex plastic components. Compared to traditional thermoplastic injection molding, LIM offers superior accuracy and the capability to produce more intricate shapes, making it especially suitable for applications demanding high performance and reliability.
Headline
Knowledge
Precision Mold Development and Manufacturing: The Core Technology of Modern Plastic Production
Precision molds form the foundation for the quality and efficiency of plastic part molding. In today¡¯s highly competitive manufacturing environment, the design and fabrication of molds directly impact a product¡¯s functional performance and market competitiveness. Excellent mold development requires not only precise engineering design but also the integration of advanced machining technologies and rigorous quality control to achieve efficient and stable mass production.
Headline
Knowledge
The Magical Journey of Milk Tea
Pouring smooth, rich milk into robust black tea with a unique aroma, then stirring it all together, gets you a cup of milk tea. But do you really know what defines milk tea, and how it differs from the milk tea we enjoy today?
Headline
Knowledge
The Connection Between Textiles and Biomimicry: A Fabric Revolution Inspired by Nature
Lotus leaves after rain shed water droplets without a trace; delicate spider silk is stronger than steel. These are not coincidences but exquisite designs evolved by nature over millions of years. The textile industry is learning from this great designer¡ªnature itself¡ªthrough biomimicry, transforming natural wisdom into fabrics that perform better and are more eco-friendly.
Agree