91ÊÓÆµ¹ÙÍø

The Role and Importance of Electrical Discharge Machining in the Field of Machining
Knowledge

The Role and Importance of Electrical Discharge Machining in the Field of Machining

The principle of electrical discharge machining is simply a thermal processing method that converts electrical energy into heat energy of the work piece to quickly melt the work piece.
Published: Jun 26, 2023
The Role and Importance of Electrical Discharge Machining in the Field of Machining

Definition of Electrical Discharge Machining

Electrical Discharge Machining (EDM) is a manufacturing process that generates sparks by discharge to make the workpiece into the desired shape. The dielectric liquid separates the two electrodes and applies a voltage to produce a rapidly and periodically changing current discharge to process the material. One of the electrodes is called a tool electrode, or pole head, and the other electrode is called a workpiece electrode, or simply a workpiece. In the process of electrical discharge machining, there will be no actual contact between the tool electrode and the workpiece electrode.

When the potential difference between the two electrodes increases, the electric field between the two electrodes also increases until the electric field strength is higher than the dielectric strength. At this time, dielectric breakdown occurs, and current flows through the two electrodes. This phenomenon is the same as the capacitor collapse, removing part of the electrode material. When the current stops, the new dielectric will flow into the electric field between the electrodes, excluding solid particles, and the insulation of the dielectric is restored. After the current flows, the potential difference between the two electrodes will return to before the dielectric breakdown, so that a new dielectric breakdown can be repeated.

Machining Process

Electric discharge machining is commonly used in mold processing: EDM and wire cutting. The electrical discharge machining referred to here mainly refers to wire cutting, although the same is an electrical discharge, the efficiency is very different.

The working principle of electrical discharge machining is: between the machine tool and the workpiece (positive and negative electrodes), a method of machining to remove excess material by electrical corrosion during electrical discharge to achieve the size and shape quality of the remaining workpiece. Take discharge as an example:

Electrode:The electrode selection material needs good conductivity, high melting point, easy processing, and corrosion-resistant materials. Common materials are copper, graphite, copper-tungsten alloy, and molybdenum. Copper and molybdenum wire are the main wire cutting materials. When processing, the electrode and the product will be corroded at the same time, but because of the characteristics of the electrode, the degree of corrosion is much smaller than the amount of erosion of the workpiece, which can be almost ignored.

Liquid Coolant:The main function of the liquid coolant is not cooling, but as a discharge medium, which plays a role in cooling and chip removal during processing. The requirements are low viscosity, high melting point, and relatively stable, non-volatile materials, common are: kerosene, deionized water, and emulsion.

After the pulse voltage is applied between the machine tool electrode and the workpiece, once there is a proper gap between the workpiece and the electrode, the current will break the medium between the workpiece and the electrode, and a connected discharge channel appears.
The discharge channel will instantly generate high temperatures, causing the surface of the workpiece to melt or even vaporize. It rapidly shrinks and explodes at the discharge gap. A small part of the surface of the workpiece is eroded and thrown out, and a huge electrical pit appears.
After the completion of one electrical discharge machining, the two electrodes will quickly return to a safe distance, relying on the dielectric to restore insulation. In this way, the surface of the workpiece is gradually eroded by the pulse voltage repeatedly acting on the workpiece and the electrode, but this process is very slow.

Electric Discharge Machine

Electrical Discharge Machine(EDM), Die-sinking EDM, also called cavity type EDM or volume EDM consists of an electrode and workpiece submerged in an insulating liquid such as more typically, oil or, less frequently, other dielectric fluids. The electrode and workpiece are connected to a suitable power supply. The power supply generates an electrical potential between the two parts. As the electrode approaches the workpiece, dielectric breakdown occurs in the fluid, forming a plasma channel, and a small spark jumps.
These sparks usually strike one at a time because it is improbable that different locations in the inter-electrode space have identical local electrical characteristics which would enable a spark to occur simultaneously in all such locations. These sparks happen in huge numbers at seemingly random locations between the electrode and the workpiece. As the base metal is eroded, and the spark gap subsequently increased, the electrode is lowered automatically by the machine so that the process can continue uninterrupted. Several hundred thousand sparks occur per second, with the actual duty cycle carefully controlled by the setup parameters. These controlling cycles are sometimes known as "on time" and "off-time." The on-time setting determines the length or duration of the spark. Hence, a longer on time produces a deeper cavity for that spark and all subsequent sparks for that cycle, creating a rougher finish on the workpiece. The reverse is true for a shorter time. Off time is the period of time that one spark is replaced by another. A longer off time, for example, allows the flushing of dielectric fluid through a nozzle to clean out the eroded debris, thereby avoiding a short circuit. These settings can be maintained in microseconds. The typical part geometry is a complex 3D shape, often with small or odd-shaped angles. Vertical, orbital, vectorial, directional, helical, conical, rotational, spin, and indexing machining cycles are also used.

Some of the advantages of EDM include machining of:

  1. Complex shapes that would otherwise be difficult to produce with conventional cutting tools.
  2. Extremely hard material to very close tolerances.
  3. Very small workpieces where conventional cutting tools may damage the part from excess cutting tool pressure.
  4. There is no direct contact between tool and workpiece. Therefore delicate sections and weak materials can be machined without any distortion.
  5. A good surface finish can be obtained.
  6. Very fine holes can be drilled.

Some of the disadvantages of EDM include:

  1. The slow rate of material removal.
  2. Potential fire hazard associated with use of combustible oil-based dielectrics.
  3. The additional time and cost used for creating electrodes for ram/sinker EDM.
  4. Specific power consumption is very high.
  5. Power consumption is high.
  6. Electrically non-conductive materials can be machined only with specific set-up of the process.
Published by Jun 26, 2023 Source : Source : Source :

Further reading

You might also be interested in ...

Headline
Knowledge
Analysis of Green Plastic Manufacturing
With the rise of environmental awareness and the global push for sustainable development goals, traditional plastics face increasing environmental pressure due to their challenges in decomposition and recycling. In response, the manufacturing industry is actively developing and applying eco-friendly plastic materials to build green manufacturing systems. This article explores the types, characteristics, and industrial applications of eco-friendly plastics to assist industry transformation and upgrading.
Headline
Knowledge
Key Parameters for Manufacturing High-Quality Plastic Products
Plastic materials are widely used across various industries due to their lightweight, ease of molding, and versatile properties. 91ÊÓÆµ¹ÙÍøever, different types of plastics exhibit distinct mechanical, thermal, chemical, and dimensional stability characteristics, which directly affect the final product¡¯s performance and service life. Therefore, understanding the performance indicators of plastics is fundamental to designing and manufacturing high-quality plastic products.
Headline
Knowledge
Dry Cutting vs. Wet Cutting: The Balance of Energy Saving, Cost, and Quality
In CNC machining, the choice of cooling method is not simply a technical preference but a multi-faceted trade-off involving cost control, machining quality, tool life, and production line stability. Both dry cutting and wet cutting have their advantages and limitations. To stand out in the fiercely competitive market, companies must shift from pursuing the ¡°theoretically optimal¡± to the ¡°contextually optimal¡± solution.
Headline
Knowledge
The Unsung Heroes of Cutting Tool Coatings: Performance Differences from TiN to DLC
In CNC machining, cutting tool coatings are a critical yet ¡°invisible¡± factor in boosting production efficiency and reducing costs. Although coating thickness is only a few microns, it significantly enhances tool hardness and wear resistance, optimizes heat dissipation, and improves cutting speed and machining accuracy. From classic Titanium Nitride (TiN) to advanced Diamond-Like Carbon (DLC) coatings, different coating materials not only offer varying hardness and heat resistance but also affect tool lifespan and machining adaptability.
Headline
Knowledge
Comprehensive Overview of Plastic Processing Methods: Mastering Key Technologies and Applications
Plastic products play an indispensable role in modern manufacturing, and various plastic processing techniques are crucial for achieving product diversity and efficient production. The following introduces five common and important plastic processing methods, helping readers gain a thorough understanding of their principles, features, and application scopes.
Headline
Knowledge
Fabric Knowledge Base: A Guide to Fiber Applications, From Beginner to Expert Selection
Textile fiber is the fundamental element that determines fabric performance and product suitability. Whether you are a designer, manufacturer, or consumer, understanding the unique characteristics of different fibers and their suitable applications is crucial for precise material selection and informed purchasing. This article will systematically introduce the applications of major natural and synthetic fibers and explain how blending them can overcome the limitations of single fibers, providing versatile functional solutions and helping you build a comprehensive knowledge base of textile applications.
Headline
Knowledge
What is Liquid Injection Molding?
Liquid Injection Molding (LIM) is a manufacturing process that involves injecting liquid silicone rubber (LSR) into precision molds, followed by heating and curing to form high-precision, complex plastic components. Compared to traditional thermoplastic injection molding, LIM offers superior accuracy and the capability to produce more intricate shapes, making it especially suitable for applications demanding high performance and reliability.
Headline
Knowledge
The Magical Journey of Milk Tea
Pouring smooth, rich milk into robust black tea with a unique aroma, then stirring it all together, gets you a cup of milk tea. But do you really know what defines milk tea, and how it differs from the milk tea we enjoy today?
Headline
Knowledge
The Connection Between Textiles and Biomimicry: A Fabric Revolution Inspired by Nature
Lotus leaves after rain shed water droplets without a trace; delicate spider silk is stronger than steel. These are not coincidences but exquisite designs evolved by nature over millions of years. The textile industry is learning from this great designer¡ªnature itself¡ªthrough biomimicry, transforming natural wisdom into fabrics that perform better and are more eco-friendly.
Headline
Knowledge
What Is a CNC Machine Tool? Unveiling the Secret Behind Modern Factories¡¯ High Efficiency
CNC (Computer Numerical Control) machine tools are automated devices that control machining processes through computer programming. Known for their high efficiency, precision, and stability, they are widely used across industries such as aerospace, automotive, mold making, electronics, medical, and energy. With the rise of Industry 4.0 and smart manufacturing, CNC technology continues to evolve toward multi-axis machining, intelligent control, remote monitoring, and integrated processes. This widespread adoption not only enhances manufacturing performance but also reshapes the workforce, shifting traditional manual skills toward digital operation and system integration¡ªbringing greater production flexibility and competitiveness to businesses.
Headline
Knowledge
The Resistor's Role in Modern Manufacturing
A resistor is a fundamental and indispensable component in electronic circuits. Its physical design is not arbitrary; rather, it is closely linked to its function, power requirements, and manufacturing method. Every detail, from its size and material to its structure, reveals its intended application. Understanding a resistor's form is like reading its "user manual," helping us to apply it more precisely.
Headline
Knowledge
The Manufacturing Process of Construction Screws: An Overview
The manufacturing of construction screws involves multiple carefully controlled steps to ensure high quality and durability. It begins with selecting suitable raw materials, usually low-carbon steel wire, followed by cold heading to form the screw head. Threads are then created through thread rolling, which preserves the metal¡¯s strength better than cutting. Heat treatment enhances hardness and toughness, while surface coatings protect against corrosion. Rigorous quality control is maintained throughout the process, and finally, the screws are packaged for safe transportation. Each stage is crucial to producing reliable screws capable of withstanding tough conditions in construction and industrial use.
Agree