91Ƶ

Simultaneous Tapping Control Structure and Adjustment Technology
Knowledge

Simultaneous Tapping Control Structure and Adjustment Technology

With the rapid development of 3C products and the aerospace components industry, the technology of CNC machine tool rigid tapping is more widely used.
Published: Nov 30, 2022
Simultaneous Tapping Control Structure and Adjustment Technology

What is Tapping?

Tapping refers to threading the inner wall of a hole and making threads so that corresponding bolts or screws can be connected to it.

Tapping development:

The non-servo spindle control architecture of the early RTEX system was limited by the spindle loop system, and a trade-off between precision and speed had to be made during machining. The machining efficiency was affected and the tool wear was greater, resulting in increased costs. The improvement of the servo control architecture has always been an industry The goal of hard work is to make the CNC machine tool controller provide more precise and high-speed processing characteristics. In recent years, the process of rigid tapping has developed towards the trend of short time, and high precision and the tapping hole diameter and thread must be within standard tolerances.

Internal thread processing is an important procedure in the manufacture of mechanical parts. The cutting method of the traditional floating tapping machine cannot predict the dynamic characteristics of the tap and the material. Under severe cutting conditions, the blade may be worn or broken, and the tool's life will be shortened. The processing conditions affect the manufacturing quality and performance of the workpiece. Rigid tapping is to match the speed and feed with the pitch of the tap and use the synchronous control method to cut the thread with the rotation of the spindle and the movement of the feed axis. This control method improves the pitch accuracy, reduces the damage rate of the internal thread, reduces the problem of tool wear, and improves the service life of the tap, which applies to various cutting materials and cutting conditions. Among them, the path overlap of rigid tapping pecking cycle cutting is high, and the requirements for the synchronous control performance of spindle rotation and servo axis feed are higher. Therefore, rigid tapping synchronous control technology is one of the important performances in the development of machine tool internal thread processing.

Rigid Tapping Synchronous Control Structure:

The control methods widely used in the industry include zero-phase error compensation and cross-coupling control, etc.; the rigid tapping master-slave control structure belongs to tracking motion, that is, the relationship between the main shaft and the servo axis is a straight-line system architecture, and the feedback of the main shaft The position is used as the input signal of the servo axis, and the servo axis with the fast response is used to follow the trajectory of the main shaft. When the movement of the main shaft is disturbed, the error of the main shaft cannot be corrected immediately, resulting in servo lag and tracking error during the movement of the following axis. The tracking error value is theoretically proportional to the speed of the Z axis, so the control system has limitations. The zero-phase error compensation method can enhance the tracking ability of the servo axis and improve the servo tracking error problem, but the disadvantage of zero phase error compensation is the previous feed-forward compensation value is a fixed value. When the processing conditions change or the system is disturbed by the outside world if the control system does not have the ability of adaptive adjustment to reflect the system changes. The feed-forward compensation value must be manually re-adjusted so that the control system maintains motion accuracy. 91Ƶever, manual adjustment is not only time-consuming but also requires experienced processing masters to complete. Therefore, this article will introduce the rigid tapping synchronous control motion architecture. The use of the cross-coupling control method is mainly to improve the servo lag and adjust the position error between the main shaft and the servo axis to reduce the contour error, and greatly improve the rigid tapping processing efficiency and the dimensional accuracy of the thread.

Rigid Tapping Synchronous Control Technology:

The synchronous control of rigid tapping in the controller can be divided into two parts, the control command, and the control loop. When performing G74/G84 rigid tapping, the Z-axis feed corresponding to one revolution of the spindle must comply with the thread pitch specification F/S=P of the tap, so that the spindle rotation and Z-axis linear motion must maintain the same pitch state. The rotation of the main shaft and the Z-axis feed not only have speed control, but position control is more important. The control command must establish a motion control path planning module. In the path planning module, the interpolation amount of the spindle and the Z axis is planned separately. After the motion path is planned according to the spindle speed command and the moving distance of the Z axis, linear interpolation is performed. Make the spindle and Z-axis commands achieve synchronous interpolation control, then the subsequent acceleration/deceleration is also processed independently. And use S Curve to plan the acceleration and deceleration curve to improve the problem of linear acceleration and deceleration jerk, so that the speed curve of the movement changes smoothly. Reduces the vibration of the machine, and reduces the problem of tool interruption during the rigid tapping process.

Variable Gain Cross-coupling Control Law

The variable gain cross-coupling control method in the control loop mainly does not change the motion control loop of each axis but applies the compensator to the control loop of each axis. The purpose is not to improve the tracking error of each axis, but to coordinate the position error of each axis to eliminate the contour error between the two axes, and adjust the contour error according to different trajectory forms. Establish a real-time position error calculation module based on the position response of each axis, and then generate an appropriate feedback signal through the position error compensation module. And distribute it to each axis for compensation, so that the dynamic response of each axis can be matched, thereby improving contour error. The controller in the position error calculation module does not need to modify the motion control structure of each axis, but the position closed-loop control is performed by the error of the position command and position feedback of each axis, and the position error compensation module controls the position of each axis. Adding variable gain CxCy to the loop can moderately adjust the contour error gain value according to different trajectory forms, and then compensate the error value required by each axis to the corresponding axis according to the proportional relationship through the PID control law. This control law Taking into account the mismatch of parameters between the spindle and the servo axis and unstable factors such as incoordination during motion, the rigid tapping synchronous control architecture will use variable gain cross-coupling control to have a good inhibitory effect on the synchronous error of each axis and realize speed control. high precision purposes.

Published by Nov 30, 2022 Source :

Further reading

You might also be interested in ...

Headline
Knowledge
PD Chargers and PD 3.1 Explained: Everything You Need to Know
The article provides an in-depth overview of USB Power Delivery (PD) and the latest PD 3.1 standard. USB PD enables faster and more efficient device charging, and PD 3.1 expands power delivery up to 240 watts, supporting high-power devices like gaming laptops, large monitors, and e-scooters. Key features include adjustable voltage, bidirectional power, and backward compatibility with older cables. PD 3.1 simplifies charging, reduces the need for multiple chargers, and improves efficiency for high-capacity devices. Its adoption is driving market growth and moving the industry toward a universal, streamlined charging standard.
Headline
Knowledge
The Distinction Between Yogurt and Probiotics
When you enjoy a sweet cup of yogurt every morning, do you believe you've provided your gut with a sufficient dose of good bacteria? Many people often equate yogurt with probiotics, thinking they are one and the same. 91Ƶever, from the perspective of their product nature and function, yogurt is more like a delicious "fermented beverage," while probiotics are "functional health supplements" designed to address specific health concerns. This article will break down the fundamental differences between the two, helping you become a smarter consumer.
Headline
Knowledge
The Birth of a Fabric: The Science and Craft of Textiles
Although fabric may seem like an ordinary item in our daily lives, its creation involves complex and highly precise processes. From cotton grown in the fields to synthetic fibers produced in factories, each raw material carries unique properties and purposes. Whether its the light, airy touch of a shirt or the high protective performance of medical textiles, behind it lies a production chain that spans agriculture, chemistry, and engineering.
Headline
Knowledge
Exploring Major Types of Plastics and Their Properties
Plastic materials are indispensable raw materials in modern manufacturing. Based on their chemical structures and processing characteristics, plastics are mainly classified into two categories: thermoplastics and thermosets. Understanding the properties of these two types aids in material selection and product design, thereby enhancing manufacturing efficiency and product performance.
Headline
Knowledge
Analysis of Green Plastic Manufacturing
With the rise of environmental awareness and the global push for sustainable development goals, traditional plastics face increasing environmental pressure due to their challenges in decomposition and recycling. In response, the manufacturing industry is actively developing and applying eco-friendly plastic materials to build green manufacturing systems. This article explores the types, characteristics, and industrial applications of eco-friendly plastics to assist industry transformation and upgrading.
Headline
Knowledge
Key Parameters for Manufacturing High-Quality Plastic Products
Plastic materials are widely used across various industries due to their lightweight, ease of molding, and versatile properties. 91Ƶever, different types of plastics exhibit distinct mechanical, thermal, chemical, and dimensional stability characteristics, which directly affect the final products performance and service life. Therefore, understanding the performance indicators of plastics is fundamental to designing and manufacturing high-quality plastic products.
Headline
Knowledge
Comprehensive Overview of Plastic Processing Methods: Mastering Key Technologies and Applications
Plastic products play an indispensable role in modern manufacturing, and various plastic processing techniques are crucial for achieving product diversity and efficient production. The following introduces five common and important plastic processing methods, helping readers gain a thorough understanding of their principles, features, and application scopes.
Headline
Knowledge
Fabric Knowledge Base: A Guide to Fiber Applications, From Beginner to Expert Selection
Textile fiber is the fundamental element that determines fabric performance and product suitability. Whether you are a designer, manufacturer, or consumer, understanding the unique characteristics of different fibers and their suitable applications is crucial for precise material selection and informed purchasing. This article will systematically introduce the applications of major natural and synthetic fibers and explain how blending them can overcome the limitations of single fibers, providing versatile functional solutions and helping you build a comprehensive knowledge base of textile applications.
Headline
Knowledge
What is Liquid Injection Molding?
Liquid Injection Molding (LIM) is a manufacturing process that involves injecting liquid silicone rubber (LSR) into precision molds, followed by heating and curing to form high-precision, complex plastic components. Compared to traditional thermoplastic injection molding, LIM offers superior accuracy and the capability to produce more intricate shapes, making it especially suitable for applications demanding high performance and reliability.
Headline
Knowledge
Precision Mold Development and Manufacturing: The Core Technology of Modern Plastic Production
Precision molds form the foundation for the quality and efficiency of plastic part molding. In todays highly competitive manufacturing environment, the design and fabrication of molds directly impact a products functional performance and market competitiveness. Excellent mold development requires not only precise engineering design but also the integration of advanced machining technologies and rigorous quality control to achieve efficient and stable mass production.
Headline
Knowledge
The Magical Journey of Milk Tea
Pouring smooth, rich milk into robust black tea with a unique aroma, then stirring it all together, gets you a cup of milk tea. But do you really know what defines milk tea, and how it differs from the milk tea we enjoy today?
Headline
Knowledge
The Connection Between Textiles and Biomimicry: A Fabric Revolution Inspired by Nature
Lotus leaves after rain shed water droplets without a trace; delicate spider silk is stronger than steel. These are not coincidences but exquisite designs evolved by nature over millions of years. The textile industry is learning from this great designernature itselfthrough biomimicry, transforming natural wisdom into fabrics that perform better and are more eco-friendly.
Agree