91ÊÓÆµ¹ÙÍø

Semiconductor Components: Foundations of Semiconductor Manufacturing
Knowledge

Semiconductor Components: Foundations of Semiconductor Manufacturing

Semiconductors are crucial components in the modern electronics that have revolutionized our daily lives. 91ÊÓÆµ¹ÙÍøever, what is often overlooked it that their manufacturing requires a complex integration of unique components such as silicon wafers, dopants, photoresist materials, equipment for lithography, and chemicals for etching. The behind-the-scenes production of semiconductor components involves a complex supply chain, and suppliers of these components play a vital role in semiconductor manufacturing. In this article we will take a look at five of these vital components.
Published: Dec 26, 2024
Semiconductor Components: Foundations of Semiconductor Manufacturing

Silicon Wafers: The Foundation of Semiconductor Devices

Silicon wafers serve as the foundational substrate for manufacturing semiconductor devices such as integrated circuits (ICs), microprocessors, and memory chips. Silicon wafers are typically made from high-purity single-crystal or polycrystalline substrates with precise crystalline orientations. Single crystal ingots are pulled from molten material that crystallizes on a base to form a continuous crystal structure. Polycrystalline substrates, on the other hand, are formed by compacting and sintering crystalline powders, resulting in a material with multiple crystal grains.

Single-Crystal and Polycrystalline Substrates

Single-Crystal Substrates are used for high-performance electronics such as integrated circuits (ICs), microprocessors, memory chips, and other high-speed electronic components. In optoelectronic devices such as light-emitting diodes (LEDs), laser diodes, and photodetectors, single-crystal substrates are preferred due to their ability to provide uniformity in quality, which is essential for efficient light emission and detection. They are also commonly used in the production of high-efficiency solar cells where the uniform crystal structure allows for better electron mobility and improved energy conversion efficiency.

Polycrystalline Substrates, on the other hand, are used for low-cost electronics where cost efficiency is a primary consideration. They are used to form the Thin-Film Transistors (TFTs) used in liquid crystal displays (LCDs), organic light-emitting diode (OLED) displays, and other flat-panel technologies. Due to their low cost, they are also widely used in solar panels.  

Dopants: Modifying Semiconductor Properties

Once the silicon substrate has been formed, it is sliced into thin wafers via precise sawing or laser cutting, and then polished to a mirror-like finish. The wafers then undergo a doping process, which introduces impurities (e.g., boron, phosphorus) into the silicon substrate to modify its electrical conductivity. Dopants replace silicon atoms in the crystal lattice, introducing extra charge carriers (electrons or holes) and changing the semiconductor's conductivity type (p-type or n-type). Common dopants for silicon include boron (p-type), phosphorus (n-type), arsenic, antimony, and gallium, each with specific doping characteristics and effects on semiconductor performance.

Photoresist Materials: Patterning Semiconductor Layers

Photoresist materials are light-sensitive coatings applied to the surface of silicon wafer substrates to prepare the wafer for the lithography process. These materials are used to define and transfer intricate patterns onto the silicon wafers as they are exposed to ultraviolet (UV) light through a photomask, following the mask design. After the photoresist materials have been applied to the wafer, in subsequent steps, they are illuminated with lithography equipment to form the desired pattern. Etching chemicals will then remove either the illuminated area or the non-illuminated area, depending on the type of photoresist materials used.

There are two main types of photoresist materials: Positive and negative.

Positive photoresists become soluble in developer solutions where they are exposed to light, typically due to a chemical change induced by the exposure. This solubility allows selective removal of the photoresist in the exposed areas, which is often followed by etching or deposition of semiconductor layers.

Negative photoresists become insoluble or resistant to developer solutions where they are exposed to light. This light exposure causes a chemical reaction that makes the resist material harder to dissolve in the developer. As a result, the areas of the substrate covered by the negative photoresist remain protected, allowing subsequent etching or deposition processes to be carried out selectively in the exposed areas.

Lithography Equipment and Pattern Transfer

Lithography defines and transfers patterns onto the photoresist-coated substrates. Lithography equipment uses a mask or reticle with a predefined pattern and a light source or electron beam to transfer the desired patterns onto the photosensitive coating (photoresist) applied to the silicon wafer. After exposure, the lithographic pattern is established, and etching chemicals are employed to selectively remove either the exposed or unexposed areas of photoresist.

Etching Chemicals: Precision Patterning

Etching chemicals, also known as etchants, are used to selectively remove or etch the thin films and patterned layers of photoresist materials from the surface of the wafer based on the pattern defined by lithography, with high precision and accuracy. Etching chemicals are designed with specific etch rates, selectivity, uniformity, and etch profiles suitable for semiconductor materials (e.g., silicon dioxide, silicon nitride, metals). Two methods used are wet etching and dry etching. 

Wet etching involves immersing silicon wafers or semiconductor layers in chemical solutions (e.g., acids, bases) that selectively dissolve or remove exposed areas based on chemical reactivity.

Dry etching methods, such as plasma etching (reactive ion etching, plasma-enhanced chemical vapor deposition), use reactive gases (e.g., fluorine, chlorine) and plasma discharges to etch semiconductor materials through chemical reactions and ion bombardment.

As semiconductor technology continues to advance, the complex integration of components used in the industry is sure to witness new applications, materials, and manufacturing processes, and semiconductor components will continue to play a critical role in the design and manufacturing of semiconductors for electronic devices.


Published by Dec 26, 2024

Further reading

You might also be interested in ...

Headline
Knowledge
Exploring Major Types of Plastics and Their Properties
Plastic materials are indispensable raw materials in modern manufacturing. Based on their chemical structures and processing characteristics, plastics are mainly classified into two categories: thermoplastics and thermosets. Understanding the properties of these two types aids in material selection and product design, thereby enhancing manufacturing efficiency and product performance.
Headline
Knowledge
Analysis of Green Plastic Manufacturing
With the rise of environmental awareness and the global push for sustainable development goals, traditional plastics face increasing environmental pressure due to their challenges in decomposition and recycling. In response, the manufacturing industry is actively developing and applying eco-friendly plastic materials to build green manufacturing systems. This article explores the types, characteristics, and industrial applications of eco-friendly plastics to assist industry transformation and upgrading.
Headline
Knowledge
Key Parameters for Manufacturing High-Quality Plastic Products
Plastic materials are widely used across various industries due to their lightweight, ease of molding, and versatile properties. 91ÊÓÆµ¹ÙÍøever, different types of plastics exhibit distinct mechanical, thermal, chemical, and dimensional stability characteristics, which directly affect the final product¡¯s performance and service life. Therefore, understanding the performance indicators of plastics is fundamental to designing and manufacturing high-quality plastic products.
Headline
Knowledge
Dry Cutting vs. Wet Cutting: The Balance of Energy Saving, Cost, and Quality
In CNC machining, the choice of cooling method is not simply a technical preference but a multi-faceted trade-off involving cost control, machining quality, tool life, and production line stability. Both dry cutting and wet cutting have their advantages and limitations. To stand out in the fiercely competitive market, companies must shift from pursuing the ¡°theoretically optimal¡± to the ¡°contextually optimal¡± solution.
Headline
Knowledge
The Unsung Heroes of Cutting Tool Coatings: Performance Differences from TiN to DLC
In CNC machining, cutting tool coatings are a critical yet ¡°invisible¡± factor in boosting production efficiency and reducing costs. Although coating thickness is only a few microns, it significantly enhances tool hardness and wear resistance, optimizes heat dissipation, and improves cutting speed and machining accuracy. From classic Titanium Nitride (TiN) to advanced Diamond-Like Carbon (DLC) coatings, different coating materials not only offer varying hardness and heat resistance but also affect tool lifespan and machining adaptability.
Headline
Knowledge
Comprehensive Overview of Plastic Processing Methods: Mastering Key Technologies and Applications
Plastic products play an indispensable role in modern manufacturing, and various plastic processing techniques are crucial for achieving product diversity and efficient production. The following introduces five common and important plastic processing methods, helping readers gain a thorough understanding of their principles, features, and application scopes.
Headline
Knowledge
Fabric Knowledge Base: A Guide to Fiber Applications, From Beginner to Expert Selection
Textile fiber is the fundamental element that determines fabric performance and product suitability. Whether you are a designer, manufacturer, or consumer, understanding the unique characteristics of different fibers and their suitable applications is crucial for precise material selection and informed purchasing. This article will systematically introduce the applications of major natural and synthetic fibers and explain how blending them can overcome the limitations of single fibers, providing versatile functional solutions and helping you build a comprehensive knowledge base of textile applications.
Headline
Knowledge
What is Liquid Injection Molding?
Liquid Injection Molding (LIM) is a manufacturing process that involves injecting liquid silicone rubber (LSR) into precision molds, followed by heating and curing to form high-precision, complex plastic components. Compared to traditional thermoplastic injection molding, LIM offers superior accuracy and the capability to produce more intricate shapes, making it especially suitable for applications demanding high performance and reliability.
Headline
Knowledge
Precision Mold Development and Manufacturing: The Core Technology of Modern Plastic Production
Precision molds form the foundation for the quality and efficiency of plastic part molding. In today¡¯s highly competitive manufacturing environment, the design and fabrication of molds directly impact a product¡¯s functional performance and market competitiveness. Excellent mold development requires not only precise engineering design but also the integration of advanced machining technologies and rigorous quality control to achieve efficient and stable mass production.
Headline
Knowledge
The Magical Journey of Milk Tea
Pouring smooth, rich milk into robust black tea with a unique aroma, then stirring it all together, gets you a cup of milk tea. But do you really know what defines milk tea, and how it differs from the milk tea we enjoy today?
Headline
Knowledge
The Connection Between Textiles and Biomimicry: A Fabric Revolution Inspired by Nature
Lotus leaves after rain shed water droplets without a trace; delicate spider silk is stronger than steel. These are not coincidences but exquisite designs evolved by nature over millions of years. The textile industry is learning from this great designer¡ªnature itself¡ªthrough biomimicry, transforming natural wisdom into fabrics that perform better and are more eco-friendly.
Headline
Knowledge
What Is a CNC Machine Tool? Unveiling the Secret Behind Modern Factories¡¯ High Efficiency
CNC (Computer Numerical Control) machine tools are automated devices that control machining processes through computer programming. Known for their high efficiency, precision, and stability, they are widely used across industries such as aerospace, automotive, mold making, electronics, medical, and energy. With the rise of Industry 4.0 and smart manufacturing, CNC technology continues to evolve toward multi-axis machining, intelligent control, remote monitoring, and integrated processes. This widespread adoption not only enhances manufacturing performance but also reshapes the workforce, shifting traditional manual skills toward digital operation and system integration¡ªbringing greater production flexibility and competitiveness to businesses.
Agree