91ÊÓÆµ¹ÙÍø

Introduction to the Oxide Black Finishing of Precision Mechanical Components
Knowledge

Introduction to the Oxide Black Finishing of Precision Mechanical Components

In most cases, blackening treatment on steel, also known as black oxidation, can enhance corrosion resistance to a certain extent. 91ÊÓÆµ¹ÙÍøever, the protective effect remains somewhat limited. To significantly improve both corrosion resistance and lubrication of the blackened layer, additional measures like oil immersion or subsequent rust prevention treatment are still necessary.
Published: Nov 03, 2023
Introduction to the Oxide Black Finishing of Precision Mechanical Components

To enhance the rust resistance of steel components, a process is employed to oxidize the steel's surface, creating a dense and smooth layer of iron oxide using potent oxidizing agents. This thin layer of ferro-ferric oxide effectively shields the interior of the steel from oxidation. The iron oxide formed at high temperatures, around 550¡ãC, has a sky-blue hue and is known as "bluish treatment," which is commonly used in weapon manufacturing. In industrial production, the bluish treatment is also a popular choice.

The ability to generate this dense and smooth iron trioxide layer on steel surfaces depends on the selection of a strong oxidizing agent. This potent oxidant typically comprises sodium hydroxide, sodium nitrite, and trisodium phosphate. When in a molten state, they are applied to steel components for bluish treatment, while their aqueous solutions are used for blackening treatment.

Precision-machined parts crafted from iron-based materials, such as stainless steel alloys, can specify black oxide as a surface treatment to provide additional protection.

What is Black Oxide?

Black oxide, also known as oxide black, is a conversion coating formed through a chemical reaction when a part is immersed in an alkaline salt solution, usually at an elevated temperature. This reaction between the stainless-steel alloy and the solution generates a layer of magnetite on the part's surface. Magnetite acts as a protective barrier, preventing moisture from corroding the alloy surface. Since magnetite is black, the process is termed "black oxide."

The solution used in this process may vary slightly depending on the metal being treated. The treatment can be applied using cold, room temperature, or hot processing methods, and it may require pre-treatment of components based on their specific requirements.

One of the advantages of black oxide is that it forms an exceedingly thin layer of magnetite, serving as a moisture barrier. The typical thickness ranges from 5 to 10 millionths of an inch (.000005 inches to .000010 inches), ensuring that the process does not affect the part's dimensional stability. Furthermore, black oxide treatment does not remove or deposit any metal from the part's surface, and unlike painted or electroplated treatments, it does not chip or flake.

Black oxide can also undergo post-treatment processes, such as oil, wax, or varnish, depending on the application and the desired appearance of the final part, ranging from a matte to a glossy finish. Post-treatment can also improve lubrication, making parts run smoother and enhancing their connection with matching components. The oil adds further corrosion protection. If black oxide is not specified for any post-treatment, the process is typically finished with oil.

The Applications of Black Oxide Can Be Specified

Components requiring compliance with MIL-DTL-13924D specifications for military purposes.

Surgical instruments in environments with reduced light to alleviate eye strain.

Gears, fasteners, and hardware in applications necessitating corrosion resistance.

Black hardware for construction and furniture assembly, adding an aesthetic touch to the final product.

Crucial factors to consider when specifying black oxide treatment include:

Duration of protection.

Indoor or outdoor usage.

Desired appearance (matte or glossy).

Environmental conditions (humidity, steam, temperature).

Intended use of the product.

Testing Options:

Various testing options are available for black oxide treatment, and they can be specified on the part drawing, but they may add to the time and cost of the process:

Stain Test:

This test checks for the presence of black powdery residues on parts when rubbed by hand after the treatment.

Relative Humidity Test: This procedure employs the ASTMD 2247 standard specification to evaluate corrosion resistance concerning water resistance of coatings at 100% relative humidity.

Published by Nov 03, 2023 Source: , Source:

Further reading

You might also be interested in ...

Headline
Knowledge
Exploring Major Types of Plastics and Their Properties
Plastic materials are indispensable raw materials in modern manufacturing. Based on their chemical structures and processing characteristics, plastics are mainly classified into two categories: thermoplastics and thermosets. Understanding the properties of these two types aids in material selection and product design, thereby enhancing manufacturing efficiency and product performance.
Headline
Knowledge
Analysis of Green Plastic Manufacturing
With the rise of environmental awareness and the global push for sustainable development goals, traditional plastics face increasing environmental pressure due to their challenges in decomposition and recycling. In response, the manufacturing industry is actively developing and applying eco-friendly plastic materials to build green manufacturing systems. This article explores the types, characteristics, and industrial applications of eco-friendly plastics to assist industry transformation and upgrading.
Headline
Knowledge
Key Parameters for Manufacturing High-Quality Plastic Products
Plastic materials are widely used across various industries due to their lightweight, ease of molding, and versatile properties. 91ÊÓÆµ¹ÙÍøever, different types of plastics exhibit distinct mechanical, thermal, chemical, and dimensional stability characteristics, which directly affect the final product¡¯s performance and service life. Therefore, understanding the performance indicators of plastics is fundamental to designing and manufacturing high-quality plastic products.
Headline
Knowledge
Dry Cutting vs. Wet Cutting: The Balance of Energy Saving, Cost, and Quality
In CNC machining, the choice of cooling method is not simply a technical preference but a multi-faceted trade-off involving cost control, machining quality, tool life, and production line stability. Both dry cutting and wet cutting have their advantages and limitations. To stand out in the fiercely competitive market, companies must shift from pursuing the ¡°theoretically optimal¡± to the ¡°contextually optimal¡± solution.
Headline
Knowledge
The Unsung Heroes of Cutting Tool Coatings: Performance Differences from TiN to DLC
In CNC machining, cutting tool coatings are a critical yet ¡°invisible¡± factor in boosting production efficiency and reducing costs. Although coating thickness is only a few microns, it significantly enhances tool hardness and wear resistance, optimizes heat dissipation, and improves cutting speed and machining accuracy. From classic Titanium Nitride (TiN) to advanced Diamond-Like Carbon (DLC) coatings, different coating materials not only offer varying hardness and heat resistance but also affect tool lifespan and machining adaptability.
Headline
Knowledge
Comprehensive Overview of Plastic Processing Methods: Mastering Key Technologies and Applications
Plastic products play an indispensable role in modern manufacturing, and various plastic processing techniques are crucial for achieving product diversity and efficient production. The following introduces five common and important plastic processing methods, helping readers gain a thorough understanding of their principles, features, and application scopes.
Headline
Knowledge
Fabric Knowledge Base: A Guide to Fiber Applications, From Beginner to Expert Selection
Textile fiber is the fundamental element that determines fabric performance and product suitability. Whether you are a designer, manufacturer, or consumer, understanding the unique characteristics of different fibers and their suitable applications is crucial for precise material selection and informed purchasing. This article will systematically introduce the applications of major natural and synthetic fibers and explain how blending them can overcome the limitations of single fibers, providing versatile functional solutions and helping you build a comprehensive knowledge base of textile applications.
Headline
Knowledge
What is Liquid Injection Molding?
Liquid Injection Molding (LIM) is a manufacturing process that involves injecting liquid silicone rubber (LSR) into precision molds, followed by heating and curing to form high-precision, complex plastic components. Compared to traditional thermoplastic injection molding, LIM offers superior accuracy and the capability to produce more intricate shapes, making it especially suitable for applications demanding high performance and reliability.
Headline
Knowledge
Precision Mold Development and Manufacturing: The Core Technology of Modern Plastic Production
Precision molds form the foundation for the quality and efficiency of plastic part molding. In today¡¯s highly competitive manufacturing environment, the design and fabrication of molds directly impact a product¡¯s functional performance and market competitiveness. Excellent mold development requires not only precise engineering design but also the integration of advanced machining technologies and rigorous quality control to achieve efficient and stable mass production.
Headline
Knowledge
The Magical Journey of Milk Tea
Pouring smooth, rich milk into robust black tea with a unique aroma, then stirring it all together, gets you a cup of milk tea. But do you really know what defines milk tea, and how it differs from the milk tea we enjoy today?
Headline
Knowledge
The Connection Between Textiles and Biomimicry: A Fabric Revolution Inspired by Nature
Lotus leaves after rain shed water droplets without a trace; delicate spider silk is stronger than steel. These are not coincidences but exquisite designs evolved by nature over millions of years. The textile industry is learning from this great designer¡ªnature itself¡ªthrough biomimicry, transforming natural wisdom into fabrics that perform better and are more eco-friendly.
Headline
Knowledge
What Is a CNC Machine Tool? Unveiling the Secret Behind Modern Factories¡¯ High Efficiency
CNC (Computer Numerical Control) machine tools are automated devices that control machining processes through computer programming. Known for their high efficiency, precision, and stability, they are widely used across industries such as aerospace, automotive, mold making, electronics, medical, and energy. With the rise of Industry 4.0 and smart manufacturing, CNC technology continues to evolve toward multi-axis machining, intelligent control, remote monitoring, and integrated processes. This widespread adoption not only enhances manufacturing performance but also reshapes the workforce, shifting traditional manual skills toward digital operation and system integration¡ªbringing greater production flexibility and competitiveness to businesses.
Agree