91ÊÓÆµ¹ÙÍø

91ÊÓÆµ¹ÙÍø to Choose the Right Tool Coating?
Knowledge

91ÊÓÆµ¹ÙÍø to Choose the Right Tool Coating?

Tool coating is an important key to improving a tool¡¯s life time. Choosing the right tool coating to match the different cutting conditions and methods can help extend tool life, and optimize production process.
Published: Apr 26, 2022
91ÊÓÆµ¹ÙÍø to Choose the Right Tool Coating?

What is Tool Coating?

Tool coating is a method that can improve the wear resistance of the tool. A thin layer of exceptionally hard, abrasive resistant metal or non-metallic compound is coated on the surface of a cemented carbide or high-speed steel (HSS) substrate by a vapor deposition method.

Carbide tool coating method:

The coating provides the tool with strong protection, acid resistance, oxidation resistance, and wear resistance. The coating can improve the surface hardness and thermal stability of the tool, and reduce friction during cutting, allowing for increased cutting speeds, thereby increasing the and tool¡¯s lifetime and processing efficiency.

  • Chemical vapor deposition (CVD):
    CVD is a chemical process that is widely used in the surface treatment of cemented carbide cutting tools. In the CVD process a source material is introduced into a reaction chamber in the form of gas, and a chemical reaction is carried out that deposits the source material onto the surface of the substrate by internal diffusion. In the reaction process, different by-products may also be produced, but most of them will be carried away with the gas flow and will not remain in the reaction chamber.
    CVD technology is mainly used for putting coatings on turning tools. These tools are then more suitable for high-speed machining during medium and heavy cutting. CVD equipment is relatively simple, the process is mature, the process is easy to control, and there is a high degree of penetration of deposited material into the base material. Multi-layer coatings can be made with uniform thicknesses. Its production process cost is low, and it is suitable for mass production.
  • Physical vapor deposition (PVD):
    PVD deposits a thin film on a material by a physical reaction under a vacuum. The vacuum aids in the evaporation of the added material during coating. The PVD process is mostly used for the surface treatment of cutting tools and various molds, as well as in the production of semiconductor devices. The difference between PVD and CVD is that the adsorption and desorption of PVD are physical, while CVD is chemical. PVD also has a wider range of applications. PVD can be used to apply films using a variety of materials, but production conditions that may affect the uniformity of film thickness and will need to be overcome.
    PVD technology is highly suitable for solid carbide tools and high-speed steel tools and is widely used in the coating treatment of carbide drills, milling cutters, taps, and welding tools. The coating temperature of PVD is lower than the tempering temperature of high-speed tool steel, so it will not hurt the hardness and dimensional accuracy of the tool. After coating, there is no need for heat treatment. The thickness of the coating is only a few microns so will not affect the accuracy of the original workpiece.

What Types of Tool Coatings are there?

Often a single coating alone cannot meet the mechanical property requirements of the tool, and multiple coatings may be applied. There are various forms of composite coatings, and the thicknesses of component coatings are getting thinner and thinner, even to the depth of nanometers.

The following are some common coatings:
  1. Titanium Nitride coating (TiN):
    TTiN is a general-purpose PVD coating that increases tool hardness and has a high oxidation temperature. Good machining results can be obtained for high-speed steel cutting tools or forming tools.
  2. Chromium Nitride coating (CrN):
    TCrN coating is widely used for cutting tools as its high resistance to adhesion reduces friction during cutting. The almost invisible coating will improve the machining performance of high-speed steel or carbide cutting tools and forming tools.
  3. Diamond coating (Diamond):
    CVD diamond coatings provide optimum performance for non-ferrous metal machining tools and are suitable coatings for machining graphite, metal matrix composites (MMC), high silicon aluminum alloys, and many other highly abrasive materials.
  4. Titanium Nitride Carbide coating (TiCN):
    The carbon element of the TiCN coating can improve the hardness of the tool and reduce adhesion to give better surface lubricity. TiCN coating is highly suitable for high-speed steel tools.
  5. Nitrogen Aluminum Titanium or Nitrogen Titanium Aluminum coating (TiAlN/AlTiN):
    The alumina layer formed in the TiAlN/AlTiN coating can effectively improve the high-temperature machining life of the tool. Mainly used in dry or semi-dry machining, it is suitable for coating carbide tools. Depending on the ratio of aluminum and titanium contained in the coating, AlTiN coating can provide higher surface hardness than TiAlN coating, and is suitable for high-speed machining.
  6. Coating equipment:
    Coatings for hard milling, tapping, and drilling are different and each is suitable for its specific application. In addition, multi-layer coatings can be used, which embed other coatings between the surface layer and the tool base, thereby increasing the service life of the tool.

What are the Advantages of the Tool Coating Process?

The coated tool has a higher surface hardness, better wear resistance, more stable chemical properties, higher heat resistance, and better oxidation resistance than uncoated tools. The life time of a coated tool can be three to five times longer than that of the uncoated tool. They can be used at higher cutting speeds and give better precision, resulting in more efficient production and lower costs.

Characteristics of Coated Tools:

  • Hardness:
    Due to the added carbon content of TiCN coatings, they have a higher hardness than TiN coatings. The TiCN coating has a 33% higher hardness than TiN. Its hardness varies from about Hv3000 to 4000. Tools coated with CVD diamond can be 2 to 3 times higher than that of uncoated tools and have a service life of about 10 to 20 times that of uncoated tools. The high hardness allows for higher cutting speeds and they are a suitable choice for cutting non-ferrous materials.
  • Oxidation temperature:
    Oxidation temperature refers to the temperature at which the coating begins to decompose. The higher the oxidation temperature value, the more favorable it is for machining under high-temperature conditions. The reason why the TiAlN coating can maintain its hardness at high temperature is that a layer of aluminum oxide can be formed between the tool and the chip, and the aluminum oxide layer can transfer heat from the tool to the workpiece or chip.
  • Wear resistance:
    Abrasion resistance refers to the ability of a coating to resist abrasion. Because some cutting tool materials may not have the optimal hardness desired for cutting, coatings can be added during production reduce wear of cutting edges.
  • Surface lubricity:
    A high coefficient of friction increases cutting heat, which can lead to reduced coating life or even failure. Reducing the coefficient of friction can extend tool life. A smooth or regular-textured coated surface helps reduce the heat of cutting, as the smooth surface reduces heat generation by allowing chips to slide quickly off the rake face. Coated tools with better surface lubricity can also be machined at higher cutting speeds than uncoated tools, further avoiding high-temperature fusion welding with the workpiece material.
  • Anti-sticking:
    The anti-stick properties of the coating prevent or mitigate chemical reactions between the tool and the material being machined, preventing workpiece material from depositing on the tool. When machining non-ferrous metals (such as aluminum, brass, etc.) a built-up edge often occurs on the tool, resulting in tool chipping or the workpiece size getting out of tolerance. Once the material being machined begins to adhere to the tool, the adhesion will continue to expand. Coatings with good anti-adhesion properties work well even in applications with poor coolant properties.

Application of Tool Coating:

The application of a good coating depends on many factors, so it can be a matter of trial and error to choose the right coating for different specific processing applications. The correct choice of coating and its properties will be critical in enhancing or improving processability. Depth of cut, cutting speed, and coolant can all have an impact on the performance of tool coating applied. Since there are many variables in the machining of workpiece material, one of the best ways to determine which coating to use is through trial cuts. Coating suppliers are constantly developing new coatings to further improve the high temperature, friction, and wear resistance of coatings.

The coating of a tool is one of the key factors affecting the life of the tool. The service life of the tool can be extended and the cost minimized. Different but suitable tool coatings can be chosen according to the cutting method and workpiece material to improve the tooling process and optimize production efficiency.

Published by Apr 26, 2022 Source :, Source :

Further reading

You might also be interested in ...

Headline
Knowledge
The Birth of a Fabric: The Science and Craft of Textiles
Although fabric may seem like an ordinary item in our daily lives, its creation involves complex and highly precise processes. From cotton grown in the fields to synthetic fibers produced in factories, each raw material carries unique properties and purposes. Whether it¡¯s the light, airy touch of a shirt or the high protective performance of medical textiles, behind it lies a production chain that spans agriculture, chemistry, and engineering.
Headline
Knowledge
Exploring Major Types of Plastics and Their Properties
Plastic materials are indispensable raw materials in modern manufacturing. Based on their chemical structures and processing characteristics, plastics are mainly classified into two categories: thermoplastics and thermosets. Understanding the properties of these two types aids in material selection and product design, thereby enhancing manufacturing efficiency and product performance.
Headline
Knowledge
Analysis of Green Plastic Manufacturing
With the rise of environmental awareness and the global push for sustainable development goals, traditional plastics face increasing environmental pressure due to their challenges in decomposition and recycling. In response, the manufacturing industry is actively developing and applying eco-friendly plastic materials to build green manufacturing systems. This article explores the types, characteristics, and industrial applications of eco-friendly plastics to assist industry transformation and upgrading.
Headline
Knowledge
Key Parameters for Manufacturing High-Quality Plastic Products
Plastic materials are widely used across various industries due to their lightweight, ease of molding, and versatile properties. 91ÊÓÆµ¹ÙÍøever, different types of plastics exhibit distinct mechanical, thermal, chemical, and dimensional stability characteristics, which directly affect the final product¡¯s performance and service life. Therefore, understanding the performance indicators of plastics is fundamental to designing and manufacturing high-quality plastic products.
Headline
Knowledge
Dry Cutting vs. Wet Cutting: The Balance of Energy Saving, Cost, and Quality
In CNC machining, the choice of cooling method is not simply a technical preference but a multi-faceted trade-off involving cost control, machining quality, tool life, and production line stability. Both dry cutting and wet cutting have their advantages and limitations. To stand out in the fiercely competitive market, companies must shift from pursuing the ¡°theoretically optimal¡± to the ¡°contextually optimal¡± solution.
Headline
Knowledge
Comprehensive Overview of Plastic Processing Methods: Mastering Key Technologies and Applications
Plastic products play an indispensable role in modern manufacturing, and various plastic processing techniques are crucial for achieving product diversity and efficient production. The following introduces five common and important plastic processing methods, helping readers gain a thorough understanding of their principles, features, and application scopes.
Headline
Knowledge
Fabric Knowledge Base: A Guide to Fiber Applications, From Beginner to Expert Selection
Textile fiber is the fundamental element that determines fabric performance and product suitability. Whether you are a designer, manufacturer, or consumer, understanding the unique characteristics of different fibers and their suitable applications is crucial for precise material selection and informed purchasing. This article will systematically introduce the applications of major natural and synthetic fibers and explain how blending them can overcome the limitations of single fibers, providing versatile functional solutions and helping you build a comprehensive knowledge base of textile applications.
Headline
Knowledge
What is Liquid Injection Molding?
Liquid Injection Molding (LIM) is a manufacturing process that involves injecting liquid silicone rubber (LSR) into precision molds, followed by heating and curing to form high-precision, complex plastic components. Compared to traditional thermoplastic injection molding, LIM offers superior accuracy and the capability to produce more intricate shapes, making it especially suitable for applications demanding high performance and reliability.
Headline
Knowledge
Precision Mold Development and Manufacturing: The Core Technology of Modern Plastic Production
Precision molds form the foundation for the quality and efficiency of plastic part molding. In today¡¯s highly competitive manufacturing environment, the design and fabrication of molds directly impact a product¡¯s functional performance and market competitiveness. Excellent mold development requires not only precise engineering design but also the integration of advanced machining technologies and rigorous quality control to achieve efficient and stable mass production.
Headline
Knowledge
The Magical Journey of Milk Tea
Pouring smooth, rich milk into robust black tea with a unique aroma, then stirring it all together, gets you a cup of milk tea. But do you really know what defines milk tea, and how it differs from the milk tea we enjoy today?
Headline
Knowledge
The Connection Between Textiles and Biomimicry: A Fabric Revolution Inspired by Nature
Lotus leaves after rain shed water droplets without a trace; delicate spider silk is stronger than steel. These are not coincidences but exquisite designs evolved by nature over millions of years. The textile industry is learning from this great designer¡ªnature itself¡ªthrough biomimicry, transforming natural wisdom into fabrics that perform better and are more eco-friendly.
Headline
Knowledge
What Is a CNC Machine Tool? Unveiling the Secret Behind Modern Factories¡¯ High Efficiency
CNC (Computer Numerical Control) machine tools are automated devices that control machining processes through computer programming. Known for their high efficiency, precision, and stability, they are widely used across industries such as aerospace, automotive, mold making, electronics, medical, and energy. With the rise of Industry 4.0 and smart manufacturing, CNC technology continues to evolve toward multi-axis machining, intelligent control, remote monitoring, and integrated processes. This widespread adoption not only enhances manufacturing performance but also reshapes the workforce, shifting traditional manual skills toward digital operation and system integration¡ªbringing greater production flexibility and competitiveness to businesses.
Agree