91ÊÓÆµ¹ÙÍø

What Are the Different Types of Chips in Milling Machines?
Knowledge

What Are the Different Types of Chips in Milling Machines?

The milling machine is a very diverse processing machine, evolved from a lathe. A lathe is a machine commonly used to produce cylindrical or rotating parts, and the milling machine is commonly used to produce rhomboid or non-rotating parts.
Published: May 10, 2023
What Are the Different Types of Chips in Milling Machines?

Understanding the Processing Technology of the Milling Machine

A milling machine can accurately milling plane, milling surface, milling groove, milling gear, milling all kinds of complicated shapes. There are many types of milling machines. For example, according to the direction of the tool spindle, there are vertical milling machines, horizontal milling machines, and compound milling machines. The vertical milling machine tool spindle is vertical. In addition to vertical milling, it can also be used for working objects. The main axis of horizontal milling machine tools is parallel to the ground, while the compound milling machine has both vertical and horizontal tool axes.

The process of milling is to use the high-speed operation of the milling cutter to contact the work piece to process the work piece into the desired shape and size. In this milling process, the milling cutter cuts the metal material on the surface of the work piece into chips, including the cutting effect of the blade and the pushing and spreading of the blade surface, so that the chips are separated from the processing surface.

The cutting effect of the blade: When the tool is in contact with the work piece, the stress in the work piece gradually increases as the workforce increases, and the stress at the point of contact with the blade edge is the largest. Where the stress is the largest and most concentrated on the work piece, the metal material breaks first and separates. Therefore, the separation of the metal surface layer material and the metal substrate of the work piece is always first formed at the contact with the blade edge, which is the cutting effect of the blade.

Pushing function in front of the tool: Under the action of sufficient mechanical force, as the relative motion of the tool and the workpiece continues, the metal to be cut will be separated along the direction of the blade movement to form a processed surface. At the same time, the squeeze in front of the tool causes elastic deformation and plastic deformation of the cutting layer until chips are finally formed and flow out along the front of the tool. This is the pushing effect in front of the tool.

Deformation of the cut metal under the action of the tool: the cut metal forms four deformation areas under the action of the cutting edge, front and back of the tool, the basic deformation area, the friction deformation area in front of the tool, the deformation area in front of the blade, and the friction behind the tool Deformation zone. The internal stress states and deformation conditions in the four deformation zones are related to each other and affect each other.

Types of Chips and Their Forming Conditions in the Milling Machine

Due to different work piece materials, different cutting conditions, and different deformation during the cutting process, different chips are produced. According to different chip shapes, chips can be divided into four types: band chips, nodal chips, granular chips, and chipped chips.

  1. Continuous Chip:
    During the cutting process, if the slip on the final slip surface has not reached the degree of rupture, a continuous strip-shaped chip with a furry outer surface and a smooth inner surface is formed. Strip chips are the most common type of chips during finishing. When processing plastic metal materials, the cutting speed is high, the thickness of the cutting layer is small, the tool rake angle is large and the cutting edge is sharp, such chips are often produced.
  2. Nodular chip:
    Nodular chip is formed under the condition that the slip on the final slip surface is sufficient and the rupture is reached. Nodular chips have impenetrable cracks, the outer surface is zigzag, and the inner surface is smooth. Most of these chips are produced when processing plastic metal materials, the cutting speed is low, the thickness of the cutting layer is large, and the tool rake angle is small.
  3. Granular chips:
    When the crack penetrates through the entire chip layer and separates the chips into a trapezoidal unit body, granular chips (also called unit chips) are formed. Granular chips are produced when machining metal materials with poor plasticity, at low cutting speed, a large cutting layer thickness, and a small tool rake angle.
  4. Chipping:
    When cutting brittle metals (such as cast iron, etc.), because the plasticity of the material is very small, the metal surface layer will be elastically deformed and minimally plastically deformed by the cutting and pushing of the tool, then it will be brittlely fractured and formed. Crush the chips. The harder and more brittle the work piece, the smaller the tool rake angle, and the greater the thickness of the cutting layer, the easier it is to produce such chips.
Published by May 10, 2023 Source :

Further reading

You might also be interested in ...

Headline
Knowledge
The Birth of a Fabric: The Science and Craft of Textiles
Although fabric may seem like an ordinary item in our daily lives, its creation involves complex and highly precise processes. From cotton grown in the fields to synthetic fibers produced in factories, each raw material carries unique properties and purposes. Whether it¡¯s the light, airy touch of a shirt or the high protective performance of medical textiles, behind it lies a production chain that spans agriculture, chemistry, and engineering.
Headline
Knowledge
Exploring Major Types of Plastics and Their Properties
Plastic materials are indispensable raw materials in modern manufacturing. Based on their chemical structures and processing characteristics, plastics are mainly classified into two categories: thermoplastics and thermosets. Understanding the properties of these two types aids in material selection and product design, thereby enhancing manufacturing efficiency and product performance.
Headline
Knowledge
Analysis of Green Plastic Manufacturing
With the rise of environmental awareness and the global push for sustainable development goals, traditional plastics face increasing environmental pressure due to their challenges in decomposition and recycling. In response, the manufacturing industry is actively developing and applying eco-friendly plastic materials to build green manufacturing systems. This article explores the types, characteristics, and industrial applications of eco-friendly plastics to assist industry transformation and upgrading.
Headline
Knowledge
Key Parameters for Manufacturing High-Quality Plastic Products
Plastic materials are widely used across various industries due to their lightweight, ease of molding, and versatile properties. 91ÊÓÆµ¹ÙÍøever, different types of plastics exhibit distinct mechanical, thermal, chemical, and dimensional stability characteristics, which directly affect the final product¡¯s performance and service life. Therefore, understanding the performance indicators of plastics is fundamental to designing and manufacturing high-quality plastic products.
Headline
Knowledge
Dry Cutting vs. Wet Cutting: The Balance of Energy Saving, Cost, and Quality
In CNC machining, the choice of cooling method is not simply a technical preference but a multi-faceted trade-off involving cost control, machining quality, tool life, and production line stability. Both dry cutting and wet cutting have their advantages and limitations. To stand out in the fiercely competitive market, companies must shift from pursuing the ¡°theoretically optimal¡± to the ¡°contextually optimal¡± solution.
Headline
Knowledge
The Unsung Heroes of Cutting Tool Coatings: Performance Differences from TiN to DLC
In CNC machining, cutting tool coatings are a critical yet ¡°invisible¡± factor in boosting production efficiency and reducing costs. Although coating thickness is only a few microns, it significantly enhances tool hardness and wear resistance, optimizes heat dissipation, and improves cutting speed and machining accuracy. From classic Titanium Nitride (TiN) to advanced Diamond-Like Carbon (DLC) coatings, different coating materials not only offer varying hardness and heat resistance but also affect tool lifespan and machining adaptability.
Headline
Knowledge
Comprehensive Overview of Plastic Processing Methods: Mastering Key Technologies and Applications
Plastic products play an indispensable role in modern manufacturing, and various plastic processing techniques are crucial for achieving product diversity and efficient production. The following introduces five common and important plastic processing methods, helping readers gain a thorough understanding of their principles, features, and application scopes.
Headline
Knowledge
Fabric Knowledge Base: A Guide to Fiber Applications, From Beginner to Expert Selection
Textile fiber is the fundamental element that determines fabric performance and product suitability. Whether you are a designer, manufacturer, or consumer, understanding the unique characteristics of different fibers and their suitable applications is crucial for precise material selection and informed purchasing. This article will systematically introduce the applications of major natural and synthetic fibers and explain how blending them can overcome the limitations of single fibers, providing versatile functional solutions and helping you build a comprehensive knowledge base of textile applications.
Headline
Knowledge
What is Liquid Injection Molding?
Liquid Injection Molding (LIM) is a manufacturing process that involves injecting liquid silicone rubber (LSR) into precision molds, followed by heating and curing to form high-precision, complex plastic components. Compared to traditional thermoplastic injection molding, LIM offers superior accuracy and the capability to produce more intricate shapes, making it especially suitable for applications demanding high performance and reliability.
Headline
Knowledge
Precision Mold Development and Manufacturing: The Core Technology of Modern Plastic Production
Precision molds form the foundation for the quality and efficiency of plastic part molding. In today¡¯s highly competitive manufacturing environment, the design and fabrication of molds directly impact a product¡¯s functional performance and market competitiveness. Excellent mold development requires not only precise engineering design but also the integration of advanced machining technologies and rigorous quality control to achieve efficient and stable mass production.
Headline
Knowledge
The Magical Journey of Milk Tea
Pouring smooth, rich milk into robust black tea with a unique aroma, then stirring it all together, gets you a cup of milk tea. But do you really know what defines milk tea, and how it differs from the milk tea we enjoy today?
Headline
Knowledge
The Connection Between Textiles and Biomimicry: A Fabric Revolution Inspired by Nature
Lotus leaves after rain shed water droplets without a trace; delicate spider silk is stronger than steel. These are not coincidences but exquisite designs evolved by nature over millions of years. The textile industry is learning from this great designer¡ªnature itself¡ªthrough biomimicry, transforming natural wisdom into fabrics that perform better and are more eco-friendly.
Agree