91Ƶ

Developing the Industry 4.0 Model and Improving Industrial Resilience
Trend

Developing the Industry 4.0 Model and Improving Industrial Resilience

Smart manufacturing utilizes advanced manufacturing technology and provides solutions through AI, the Internet of Things, big data, cloud, edge computing, and other technologies to substitute the production process with an intelligent manufacturing model and customize products according to customer needs.
Published: Apr 12, 2022
Developing the Industry 4.0 Model and Improving Industrial Resilience

The Industrial Model of Industry 4.0:

Smart factories can quickly switch processes and mass-produce customized or even unique products at the same cost. Corporate branding or manufacturing scale is no longer a key advantage. When traditional supply chains break down, innovative enterprises rapidity grab the market with competitive and revolutionary business models that produce smart products.

The Development Background of Industry 4.0:

The rise and popularization of mechanization, electric power, and information technology (IT) have triggered three industrial revolutions successively, and have promoted major progress in the development of human civilization. The development of data communication technology and the breakthrough of computer computing power have driven the trend of digitalization. This has laid the foundation for, and triggered the fourth industrial revolution, also known as Industry 4.0. Industry 4.0 not only changes the methods of production and provision of services through smart factories and smart production, but transforms individual industries, according to their unique characteristics and needs, to each having their own unique Industry 4.0.

Key Applications for Industry 4.0

  1. Cyber-Physical System (CPS):
    Cyber-Physical System (CPS) is the key technology of Industry 4.0. Through computers, sensors, and the use of network technology, various devices, machines, and digital systems are interconnected. Through the communication and interaction between them, the virtual and physical worlds are seamlessly integrated. CPS also embeds computing and communication into physical operation programs, adding new intelligence and capabilities to physical systems. Real-time perception, dynamic control, and intelligent instant messaging services are provided. CPS has been implemented in many industrial fields, such as online and offline systems (O2O), the retail industry, omnichannel marketing, smart homes, transportation, security, environmental control, process control, and other fields, bringing economic, political and social benefits.
  2. Intelligent robots and machines:
    Robots have gradually replaced human labor. Industrial robots of various types and different purposes have not only grown rapidly in number but have also gradually become more intelligent, able to adapt, communicate and interact, and are gradually replacing human workflows in certain fields. With human-machine interfaces equipped with smart sensor capabilities, and humans working together to perform tasks, there will still be a significant increase in production capacity. This will have a huge impact on the kind of skills required and cost structure of factories.
  3. Industrial virtualization/automation:
    When building a new factory or producing new products in an existing factory area, Industry 4.0 will use virtual factories or products to prepare for physical mass production. If any process can be simulated and confirmed in the virtual environment first, it represents that the final solution is ready. Software parameters and numerical matrices can then be uploaded to the physical machine that controls mass production, and the physical operations can proceed. The virtual factory can use 3D technology to design production process and visualize the interaction of worker and machine.
  4. Big data:
    The factory of the future will generate vast amounts of data which will need to be stored, processed, and analyzed. In the Industry 4.0 environment, CPS can develop, manage, and make good use of massive data.? Interconnectivity of machines will aid machine intelligence, flexibility, and adjustment capabilities, allowing CPS to integrate industrial mass production, logistics and services. This will transform today's factories into highly competitive and economically promising Industry 4.0 factories. The integration of massive data and cloud computing is bound to lead to new types of information application models, thereby bringing about intelligent innovation.
  5. IT system:
    ?Today's IT systems have become the core of production systems. Industry 4.0 IT systems use the cloud, mobile devices, and big data to more closely link sub-systems, processing flows, interfacing internal and external modules, and network connections between suppliers and customers. Its complexity has also increased, forming intelligent supply chains which have been transformed into a super-large information systems that connect enterprises across regions. In the factory, the IT system will follow clear standard specifications to integrate software, hardware, storage equipment, and peripheral systems. These all connect to form a Cyber-Physical Production System (CPPS), which has the ability to control product characteristics and processing. Sensors interact with each other, and flexible machine operation programs can be changed in a short time to adjust production process, avoiding downtime and thereby greatly improving production efficiency.
  6. Artificial Intelligence:
    Artificial intelligence technology has become the core technology of smart manufacturing as it can automatically extract key features and regular patterns in manufacturing from a large amount of raw data. They can learn from mistakes that have occurred in the past, make predictions and give advance warnings. This will reduce downtime and improve process efficiency by making prompt adjustments to the production line. Artificial intelligence refers to the intelligence displayed by human-made machines, including natural language processing, planning, and learning, and reasoning and problem-solving.
    • Obtaining data: A large amount of required data is collected through cameras and sensors, such as for temperature and humidity.
    • Data preprocessing: The quality of the data collected will affect the learning model. If the learning has noisy data, it will inevitably affect the prediction results. Therefore, it is necessary to first preprocess the data collected into clean data.
    • Model establishment: The artificial intelligence model is composed of structures which imitate the structure and function of a biological neural network. These generate mathematical models which are used to evaluate operations. The model structures can be divided into the input, hidden, and output layers. Neurons between layers connect the layers. The neurons operate through an active, nonlinear function to avoid the linear relationship between the input and the output.
    • Prediction: After a period of feature extraction, the model can eventually numerically predict or classify unseen data. Usually, the prediction stage is faster than the training stage.

Impact of Industry 4.0:

The scope of Industry 4.0 is quite broad, including, Machine-to-machine (M2M) interaction and the Internet of Things (IoT). The rapid development of digital and network technology has brought a huge impact on various industries, making corporate strategies and business models increasingly challenging. In manufacturing, whether it is mass production of a unique product, or small-volume production of a unique customized product, Industry 4.0 can achieve the same level of quality and overall production capacity and efficiency.

Although intelligent production is emphasized in the era of Industry 4.0, human beings are still of great importance. Human input will shift to designing and planning mass production systems that cannot be replaced by the CPS system.

In smart factories themselves, workers will transform from being traditional machine operators to those who control, adjust, and make decisions on production programs, to optimize the production process. With the increase in knowledge-intensive output, the professional degree of labor required by smart factories will increase, and their cross-industry and cross-field capabilities will also need to be improved. Therefore, for enterprises, the cultivation of human resources will be an important key to success.

Published by Apr 12, 2022 Source :

Further reading

You might also be interested in ...

Headline
Trend
EU Rules and Taiwans Textile Sustainability Shift
In recent years, the European Union has introduced a series of new regulations on sustainability and the circular economy, with the textile industry being one of the key areas under scrutiny. These regulations not only change how products are designed and manufactured, but also reshape collaboration models across global supply chains. For Taiwans export-oriented textile sector, this means accelerating the pace of sustainable transformation in order to remain competitive in the European marketwhile turning challenges into opportunities for brand and technological upgrades.
Headline
Trend
New Landscape in Precision Machining: Five Key Evolution Trends in CNC Toolroom Lathes
As global manufacturing competition intensifies, the precision machining industry is facing unprecedented challenges: parts are becoming smaller and more geometrically complex, machining accuracy requirements are rising, and delivery deadlines are increasingly compressed. As a core piece of equipment in this field, the CNC toolroom lathe is undergoing a profound transformation driven by both technological breakthroughs and evolving market demands.
Headline
Trend
Digital Transformation and Smart Manufacturing Trends in Machining Industry: Applications of Industry 4.0, IoT, and AI
The global manufacturing sector is undergoing an unprecedented wave of digital revolution. This trend brings technological advancement but also intensifies international market competition. The processing industry, a critical part of the manufacturing supply chain, faces multiple challenges including raw material price fluctuations, rising labor costs, and stricter environmental regulations. As consumer demands become more diverse and customized, the processing sector must swiftly adjust production methods. By embracing digital transformation, companies can enhance production efficiency and product quality, securing their competitive edge and market position. Digital transformation is no longer optional but an essential path for sustainable development in manufacturings future.
Headline
Trend
Multi-Model Comparison: The Full Evolution from Manual to CNC Toolroom Lathes
High-precision lathes and toolroom lathes specialize in producing small, high-accuracy components, often used in prototype development and sample manufacturing. As CNC toolroom lathes become increasingly widespread, the industry is moving toward digital and automated control to shorten production cycles and improve machining quality and consistency.
Headline
Trend
CNC Market in India Exhibits CAGR Significantly Higher Than Global Average: Market Outlook
Indias manufacturing sector is undergoing a critical transformation phase, with the rapid rise of industrial automation propelling the CNC machine tool market into a global growth hotspot. According to the latest research report by Technavio, the overall machine tool market in India is expected to increase by approximately USD 3.08 billion from 2024 to 2029, with a compound annual growth rate (CAGR) of 11.6%. In contrast, the global machine tool market CAGR is only about 5.07% (2023C2029), and the global CNC machine tool market CAGR is around 5.4% (2025C2029). Indias market growth rate is nearly twice the global average. Furthermore, supported by its large industrial base and favorable policies, India has strong potential to become a key strategic region in the global CNC machine tool market.
Headline
Trend
Global Competitiveness of Taiwans Lathe Industry
As global manufacturing moves toward high-precision and high-efficiency machining, lathe equipment remains an indispensable core tool in aerospace, automotive, energy, and medical sectors. Leveraging a solid manufacturing foundation and flexible customization capabilities, Taiwan has steadily expanded in the international lathe market, becoming a key supplier to both Europe, the United States, and emerging markets. To address diverse machining needs, Taiwanese manufacturers deploy both manual and CNC lathes, covering educational training, basic machining, and large-scale automated productiondemonstrating high adaptability to market demands.
Headline
Trend
Textile Black Tech: The Superpowers of Functional Fabrics
Have you ever wondered why some jackets can block wind and rain without making you feel stuffy? Or why some sportswear wicks away sweat quickly, keeping you dry? This isn't magic; it's the superpower of high-performance textiles. They are no longer just clothes but key materials that improve quality of life and ensure personal safety.
Headline
Trend
Edible Film Packaging: The Delicious and Eco-Friendly Solution
Imagine a candy wrapper you don't have to unwrap and that doesn't become trash. Would you eat it or throw it away? With modern technology advancing daily, the food packaging industry has developed edible film packaging to keep up with sustainability trends, allowing you to eat the protective layer directly while enjoying your food.
Headline
Trend
From Trade Wars to Bubble Tea: When Global Tariffs Impact a Local Industry
In today's globalized world, changes in a country's trade policies can have far-reaching consequences. A single tariff agreement or trade barrier not only affects large-scale international commodity trading but can also subtly alter our daily consumption habits. When this wave of trade protectionism sweeps across the globe, even Taiwan's most iconic cultural exportbubble teacannot remain untouched. In the following, we'll delve into how tariffs impact the bubble tea industry's supply chain and the challenges and opportunities they present.
Headline
Trend
The Evolution and Challenges of Five-Axis Machining: Future Directions for High-Complexity Manufacturing
Five-axis machining technology marks a major leap for the manufacturing industry, moving from traditional three-axis methods to advanced machining. It enables the production of complex, multi-angled parts in a single setup, significantly boosting both efficiency and precision. 91Ƶever, to fully unlock the potential of five-axis machining, companies need more than just costly equipmentthey also require skilled operators, rigorous process management, and the support of smart manufacturing technologies such as AI, automation, and digital simulation. Looking ahead, five-axis machining will continue evolving toward greater precision, environmental sustainability, and hybrid manufacturing, integrating sustainable principles to help businesses strengthen their competitiveness. Overall, five-axis machining is not merely an equipment upgrade, but a comprehensive transformation that blends technology, talent, and managementmastering these elements will be the key to business success.
Headline
Trend
Machine Tools Can Be Green Too: A New Take on Carbon Reduction Through Equipment Efficiency
As global carbon emission regulations become increasingly stringent, the manufacturing industry is facing growing pressure to reduce its carbon footprint. Due to their long operating hours and high energy consumption, machine tools have become a critical focus in carbon management. This article highlights that by choosing high-efficiency machine tools, optimizing machining processes, and implementing intelligent systems, manufacturers can significantly cut energy use and carbon emissionswhile also boosting productivity and operational stability. Green efficiency is no longer just an option; it's a necessary path for manufacturing to achieve sustainability and stay competitive.
Headline
Trend
The Future of Smart Textiles: 91Ƶ Smart and Functional Wearables Are Changing Our Lives
From initial fabrics to smart textiles integrated with modern technology, apparel is no longer merely for covering and decoration. Instead, it is gradually transforming into an intelligent partner capable of sensing its environment and its user. This quietly emerging textile revolution is redefining our perception and expectations of "wearable" products. This article will deeply explore the definition of smart wearables and their revolutionary aspects, analyze their cutting-edge applications in the field of health and medicine, and look forward to their future development and the challenges they face, revealing how smart textiles are reshaping our lifestyle.
Agree