91Ƶ

Exploring the Power of Cubic Boron Nitride in Cutting Applications
Knowledge

Exploring the Power of Cubic Boron Nitride in Cutting Applications

Cubic Boron Nitride (CBN) turning tools are tightly sintered from boron nitride and tungsten carbide bases. The hardness of boron nitride is next to PCD. It has excellent chemical stability and will not produce affinity with iron, cobalt, and nickel-based metals. Therefore, it is especially suitable for work hardening steel, with a hardness above HRC45. Chilled cast iron and heat-resistant steel (Inconel) are also suitable.
Published: Jul 14, 2023
Exploring the Power of Cubic Boron Nitride in Cutting Applications

In the machining industry, CBN tools and CBN inserts are often mentioned cutting tools, which are mainly used for the cutting and processing of difficult-to-machine materials and superhard materials. So what kind of tool can be called a CBN tool? What does CBN mean?

What Does Cubic Boron Nitride (CBN) Mean?

Cubic boron nitride (CBN) is a material whose hardness is next to diamond. It is a new type of inorganic superhard material, which has been widely used in the processing fields of different industries.

As the name suggests, CBN tool is a kind of tool made of CBN material, which is a new type of tool material developed in the early 1970s. Since cubic boron nitride can withstand high temperature of 1300~1500, CBN tools can perform high-speed cutting of iron-based metals under high temperature conditions without reacting, with high machining accuracy, low surface roughness, and 10 times higher cutting speed than cemented carbide tools.

CBN tools can cut and process quenched high-hardness steel and other high-hardness materials, and realize the function of turning grinding instead of grinding, which has a significant practical effect on small and medium-sized machining enterprises that do not have grinding machines. For example, Bot CBN tool not only has high processing efficiency, but also can avoid surface burn and surface hard force caused by grinding, which greatly improves the surface quality of the workpiece.

CBN tools are widely used in many metal cutting industries due to their excellent properties such as high thermal hardness, high wear resistance and not easy to stick to the tool. The applicable scope mainly includes the following difficult-to-machine materials: various quenched steels, such as carbon tool steel, alloy steel, bearing steel, die steel, high-speed steel, etc.; thermal spray materials, such as Ni-based, Fe-based two series products; Grinding cast iron: such as V-Ti cast iron, high phosphorus cast iron and chilled cast iron, etc.; some workpieces such as titanium alloys and heat-resistant alloys.

The CBN blade can be fixed on the tool holder by mechanical clamping or welding, or the CBN sheet and cemented carbide can be pressed together to form a composite PCBN tool. For example, installing a CBN tool on a machine tool with better rigidity can give full play to the performance of the CBN tool and use it in various machining processes, saving costs and improving production efficiency.

At present, CBN tools are widely used in many machining processes in the automotive, aerospace and medical equipment industries. If you encounter difficult-to-machine materials with high hardness, you may try it with a CBN tool.

Which Materials Are CBN Tools Suitable for Machining?

As mentioned above, CBN tools are often used for cutting ferrous metals, mainly including high-hardness cast iron/cast steel/forged steel, quenched steel, ordinary gray cast iron, powder metallurgy and other difficult-to-machine materials (hardness of steel requires HRC45 or more).

  • High hardness cast iron/cast steel/forged steel: such as high chromium cast iron, alloy cast iron, nickel hard cast iron, white cast iron, high manganese steel, high speed steel and other materials can be processed, such as rollers, slurry pump casings, impellers, guard plate, lining plate, etc. are all typical parts. The overall polycrystalline CBN tool is mainly used for machining such workpieces, with a large allowance for cutting blanks, which improves production efficiency and reduces total production costs.
  • Hardened steel: parts such as hardened gears/gear shafts, bearings, molds, synchronizers, ball cage universal joints, and hardened rolls are typical hardened parts with a hardness of around HRC60. High surface finish.
  • Ordinary gray cast iron: such as engine block/cylinder head, brake disc, brake drum, pulley, clutch pressure plate, etc. are all gray cast iron materials. The use of CBN tools can advantageously replace the high-speed cutting of carbide inserts, and its cutting speed can be several times higher than that of carbide tools, and on the basis of ensuring high surface quality, the tool life is 10-20 times that of carbide inserts.

Which Processing Methods Are CBN Tools Suitable For?

  • High-speed cutting: It is mainly reflected in the field of ordinary gray cast iron. Due to the rising price of gray cast iron raw materials, the competition with enterprises has gradually increased. Initially, the maximum linear speed of gray cast iron with carbide inserts cannot exceed 350m/min, otherwise, severe wear will occur. 91Ƶever, using CBN tools to process gray cast iron can reach a maximum linear speed of 1500m/min (without considering the rigidity of the machine tool), and ensure high wear resistance and high workpiece surface quality.
  • Heavy-duty cutting: It is mainly reflected in the fields of high hardness cast iron/cast steel, such as rollers and pumps used in large equipment, and the machining allowance of blanks is large, and cutting tools with excellent wear resistance and impact toughness are required. Machining, and the CBN tool can reach a cutting depth of 10mm at a time, which greatly improves the production efficiency.
  • Dry cutting: No matter what kind of material is processed, CBN tools are firstly processed by dry cutting. CBN tools have strong red hardness at high temperature and can withstand normal cutting at a high temperature of 1200 C to ensure excellent durability. In addition, unnecessary costs caused by using cutting fluid to process workpieces are reduced, and a good production environment is guaranteed.
Published by Jul 14, 2023 Source :, Source :

Further reading

You might also be interested in ...

Headline
Knowledge
The Distinction Between Yogurt and Probiotics
When you enjoy a sweet cup of yogurt every morning, do you believe you've provided your gut with a sufficient dose of good bacteria? Many people often equate yogurt with probiotics, thinking they are one and the same. 91Ƶever, from the perspective of their product nature and function, yogurt is more like a delicious "fermented beverage," while probiotics are "functional health supplements" designed to address specific health concerns. This article will break down the fundamental differences between the two, helping you become a smarter consumer.
Headline
Knowledge
The Birth of a Fabric: The Science and Craft of Textiles
Although fabric may seem like an ordinary item in our daily lives, its creation involves complex and highly precise processes. From cotton grown in the fields to synthetic fibers produced in factories, each raw material carries unique properties and purposes. Whether its the light, airy touch of a shirt or the high protective performance of medical textiles, behind it lies a production chain that spans agriculture, chemistry, and engineering.
Headline
Knowledge
Exploring Major Types of Plastics and Their Properties
Plastic materials are indispensable raw materials in modern manufacturing. Based on their chemical structures and processing characteristics, plastics are mainly classified into two categories: thermoplastics and thermosets. Understanding the properties of these two types aids in material selection and product design, thereby enhancing manufacturing efficiency and product performance.
Headline
Knowledge
Analysis of Green Plastic Manufacturing
With the rise of environmental awareness and the global push for sustainable development goals, traditional plastics face increasing environmental pressure due to their challenges in decomposition and recycling. In response, the manufacturing industry is actively developing and applying eco-friendly plastic materials to build green manufacturing systems. This article explores the types, characteristics, and industrial applications of eco-friendly plastics to assist industry transformation and upgrading.
Headline
Knowledge
Key Parameters for Manufacturing High-Quality Plastic Products
Plastic materials are widely used across various industries due to their lightweight, ease of molding, and versatile properties. 91Ƶever, different types of plastics exhibit distinct mechanical, thermal, chemical, and dimensional stability characteristics, which directly affect the final products performance and service life. Therefore, understanding the performance indicators of plastics is fundamental to designing and manufacturing high-quality plastic products.
Headline
Knowledge
Dry Cutting vs. Wet Cutting: The Balance of Energy Saving, Cost, and Quality
In CNC machining, the choice of cooling method is not simply a technical preference but a multi-faceted trade-off involving cost control, machining quality, tool life, and production line stability. Both dry cutting and wet cutting have their advantages and limitations. To stand out in the fiercely competitive market, companies must shift from pursuing the theoretically optimal to the contextually optimal solution.
Headline
Knowledge
The Unsung Heroes of Cutting Tool Coatings: Performance Differences from TiN to DLC
In CNC machining, cutting tool coatings are a critical yet invisible factor in boosting production efficiency and reducing costs. Although coating thickness is only a few microns, it significantly enhances tool hardness and wear resistance, optimizes heat dissipation, and improves cutting speed and machining accuracy. From classic Titanium Nitride (TiN) to advanced Diamond-Like Carbon (DLC) coatings, different coating materials not only offer varying hardness and heat resistance but also affect tool lifespan and machining adaptability.
Headline
Knowledge
Comprehensive Overview of Plastic Processing Methods: Mastering Key Technologies and Applications
Plastic products play an indispensable role in modern manufacturing, and various plastic processing techniques are crucial for achieving product diversity and efficient production. The following introduces five common and important plastic processing methods, helping readers gain a thorough understanding of their principles, features, and application scopes.
Headline
Knowledge
Fabric Knowledge Base: A Guide to Fiber Applications, From Beginner to Expert Selection
Textile fiber is the fundamental element that determines fabric performance and product suitability. Whether you are a designer, manufacturer, or consumer, understanding the unique characteristics of different fibers and their suitable applications is crucial for precise material selection and informed purchasing. This article will systematically introduce the applications of major natural and synthetic fibers and explain how blending them can overcome the limitations of single fibers, providing versatile functional solutions and helping you build a comprehensive knowledge base of textile applications.
Headline
Knowledge
What is Liquid Injection Molding?
Liquid Injection Molding (LIM) is a manufacturing process that involves injecting liquid silicone rubber (LSR) into precision molds, followed by heating and curing to form high-precision, complex plastic components. Compared to traditional thermoplastic injection molding, LIM offers superior accuracy and the capability to produce more intricate shapes, making it especially suitable for applications demanding high performance and reliability.
Headline
Knowledge
Precision Mold Development and Manufacturing: The Core Technology of Modern Plastic Production
Precision molds form the foundation for the quality and efficiency of plastic part molding. In todays highly competitive manufacturing environment, the design and fabrication of molds directly impact a products functional performance and market competitiveness. Excellent mold development requires not only precise engineering design but also the integration of advanced machining technologies and rigorous quality control to achieve efficient and stable mass production.
Headline
Knowledge
The Magical Journey of Milk Tea
Pouring smooth, rich milk into robust black tea with a unique aroma, then stirring it all together, gets you a cup of milk tea. But do you really know what defines milk tea, and how it differs from the milk tea we enjoy today?
Agree