91ÊÓÆµ¹ÙÍø

What is Carbon Fiber Molding Process?
Knowledge

What is Carbon Fiber Molding Process?

Carbon fiber composite materials need to be processed using a molding process from prepreg to the final part. With the development of carbon fiber technology, the molding process of carbon fiber composite materials is also constantly improving. 91ÊÓÆµ¹ÙÍøever, various molding processes of carbon fiber composite materials do not exist in the way of updating and eliminating, and often a variety of processes coexist to achieve the best effect under different conditions and different situations.
Published: Nov 02, 2022
What is Carbon Fiber Molding Process?

What is the Carbon Fiber Forming Process?

  • Injection molding process:
    It belongs to a type of low-pressure molding in the hand lay-up process. After mixing chopped fiber and resin with a spray gun, compressed air is sprayed on the mold, and after reaching a predetermined thickness, it is manually pressed with a rubber roller, and then cured and formed. A semi-mechanized molding process created to improve hand lay-up molding has a certain degree of improvement in work efficiency, but it still cannot meet mass production. It is used to manufacture the transition layer of automobile bodies, hulls, bathtubs, and storage tanks.
  • Winding molding:
    The process of winding continuous fibers or cloth tapes impregnated with resin glue on a core mold according to a certain rule, and then curing and demolding into composite products. Carbon fiber winding molding can give full play to its characteristics of high specific strength, high specific modulus, and low density.
  • Liquid molding:
    The liquid monomer is synthesized into a high molecular polymer, and then the process of curing the polymer into a composite material is changed to be completed directly in the mold at one time, which not only reduces the energy consumption in the process but also shortens the molding cycle. 91ÊÓÆµ¹ÙÍøever, the application of this process must be based on precise pipeline transportation and metering, as well as automatic temperature and pressure control. Liquid molding mainly includes the RTM molding process, RFI molding, and VARI molding. The main advantages of the resin film infiltration (RFI) molding process are that the mold is simpler than the RTM process mold. The resin flows along the thickness direction, it is easier to infiltrate the fibers, there is no prepreg, and the cost is lower. 91ÊÓÆµ¹ÙÍøever, the dimensional accuracy and surface quality of the obtained products are not as good as those of the RTM process, the void content is higher, and the efficiency is slightly lower, which is suitable to produce parts with large planes or simple curved surfaces. The advantages of the vacuum-assisted forming process (VARI) are a high utilization rate of raw materials, less trimming and processing, no need for prepregs, and low cost. It is suitable to produce large-scale panel structural parts at room temperature or low temperature. But the disadvantages are similar to the RFI molding process.
  • Resin Transfer Molding (RTM):
    Resin Transfer Molding (RTM) technology is a low-cost method of manufacturing composite materials that were initially primarily used for aircraft secondary load-bearing structures such as doors and inspection hatches. In 1996, the US Defense Advance Research Agency carried out research on low-cost RTM manufacturing technology of high-strength main bearing components. RTM technology has the advantages of high efficiency, low cost, good quality of parts, high dimensional accuracy, and little impact on the environment. It can be applied to the molding of composite parts with large volumes, complex structures, and high strength. One of the most active research directions in the field of material processing.
  • Compression molding:
    The carbon fiber prepreg is placed between the upper and lower molds, and the mold is placed on the hydroforming table. After a certain period of high temperature and high pressure to solidify the resin, the carbon fiber product is removed. This molding technology has the advantages of high efficiency, good product quality, high dimensional accuracy, and less environmental impact, and is suitable for the molding of mass and high-strength composite parts. Mold manufacturing is complex, the investment is high, and the size of the parts is limited by the size of the press.
  • Injection molding:
    This is a new technology, bole CIML equipment integrates the traditional multi-step process into a one-step process, which shortens the process flow. The fiber length is better preserved to achieve the purpose of energy-saving and high-efficiency production. By overcoming a series of key technical problems such as formula optimization, compounding system, intelligent control system, and molding process parameter optimization in material-equipment-manufacturing, it fully meets the requirements of vehicle light weighting in terms of product strength, cost, and efficiency. A weapon tailored for lightweight automobiles.
  • Hand lay-up--wet lay-up method:
    Apply mold release agent and gel coat on the working surface of the mold, lay the cut carbon fiber prepreg on the working surface of the mold, brush or spray the resin system glue, and after reaching the required thickness, form, solidify, and demold. With highly developed preparation technology, the hand lay-up process is still simple in process and low in investment. The advantages of wide application and other advantages are widely used in many fields such as petrochemical containers, storage tanks, and automobile shells. The disadvantage is that the texture is loose, the density is low, the product strength is not high, and it mainly depends on labor, the quality is unstable, and the production efficiency is low.
  • Vacuum autoclave:
    The composite material blank formed by laying up a single layer of prepreg material in a predetermined direction is placed in an autoclave, and the curing process is completed under a certain temperature and pressure. An autoclave is a special pressure vessel that can withstand and regulate a certain temperature and pressure range. The blank is laid on the surface of the mold with a release agent, then covered with porous release cloth (film), absorbent felt, and the air felt in sequence, sealed in a vacuum bag, and then placed in an autoclave. Before heating and curing, vacuum the bag to remove air and volatiles, and then heat up, pressurize and cure according to the curing system of different resins. The formulation and implementation of the curing system are the keys to ensuring the quality of autoclaved parts.
  • Vacuum import (VIP):
    Lay carbon fiber composite material on the mold, then lay a vacuum bag, and draw out the vacuum in the system to form a negative pressure in the mold cavity. And use the pressure generated by the vacuum to press the unsaturated resin into the fiber layer through the pre-laid pipeline, let the resin infiltrate the reinforcing material, and finally fill the entire mold. After the product is cured, remove the vacuum bag material, and obtain the desired product from the mold. When resin infiltrates carbon fiber in a vacuum environment, there are very few bubbles generated in the product. The product has higher strength, lighter weight, stable product quality, and reduces the loss of resin, and only one side of the mold can be used to obtain smooth and flat products on both sides. Can better control product thickness. In rudders and radar shields in the marine industry, blades and cabin covers in wind power energy, and various types of roofs, windshields, and carriages in the automotive industry.
  • 3iTech induction heating:
    A new type of induction heating process that integrates an inductor into the mold. Which can process carbon fibers at a temperature of 20¡ãC-400¡ãC, and heats the surface of the mold with an inductor integrated inside the mold through heat conduction. The use of electromagnetic induction can rapidly heat the mold and can control the local temperature well. The advantage is a significant reduction in cycle time and component cost. The technology is currently not suitable for large components, and the relevant production volume must be large enough.
  • Lamination molding:
    The layer-by-layer prepreg is placed between the upper and lower flat molds for pressure heating and curing. This process can directly inherit the production methods and equipment of wood plywood, and improve and perfect it according to the rheological properties of the resin. The lamination molding process is mainly used to produce composite sheets of various specifications and uses. It has the characteristics of a high degree of mechanization and automation, and stable product quality, but the one-time investment in equipment is large.
  • Pultrusion:
    Under the action of traction, the continuous carbon fiber tow, belt, or cloth impregnated with resin glue is formed and cured by extrusion die to continuously produce profiles of unlimited length. Pultrusion is a special process in the composite material forming process. Its advantages are that the production process can be fully automated and controlled, and the production efficiency is high. The fiber mass fraction in pultruded products can be as high as 80%. The dipping is carried out under tension, which can give full play to the role of reinforcing materials. The product has high strength. The longitudinal and transverse strength of the finished product can be adjusted arbitrarily, which can meet the different mechanical properties of the product. Require. This process is suitable for producing profiles with various cross-sectional shapes, such as I-shaped, angle-shaped, groove-shaped, and special-shaped section pipes, and combined section profiles composed of the above-mentioned sections.

The Difference Between Dry Forming and Wet Forming of Carbon Fiber

In the production field of carbon fiber products, there are dry carbon fibers and wet carbon fibers. The distinction is expressed in the production process of carbon fiber products. The two most used methods for processing carbon fiber composites are prepreg autoclave forming mode and vacuum introduction mode.

There are obvious differences in the performance of the products produced by the two processes. The wet process is prone to deformation during processing and the truncation part is prone to de-filamentation. The resin and fiber have poor bonding properties and are prone to oxidative discoloration due to contact with air. The dry prepreg process does not have the above situation, but it is prone to performance degradation under UV irradiation. The carbon fiber products produced by these two production methods are significantly different in weight and hardness. Carbon fiber products refer to the use of carbon fiber prepregs as raw materials, which are processed into material products that can meet the requirements of users through different processing methods.

Carbon fiber parts are lighter than metal aluminum, but stronger than steel, and have the characteristics of corrosion resistance and high modulus. They are important materials in national defense, military industry, and civilian use. It not only has the inherent intrinsic properties of carbon materials but also has the soft processability of textile fibers. It is a new generation of reinforcing fibers. Compared with dry carbon fiber, the carbon fiber pattern of wet carbon fiber will be deformed when vacuuming, and carbon fiber filaments will also be seen in its cross-section, while dry carbon fiber products will not.

The carbon fiber products made by the dry process have good hardness and are easy to be processed by CNC, but the production cycle is long and it is not easy to mass-produce, and the production cost is high. Carbon fiber products refer to the use of carbon fiber prepregs as raw materials, which are processed into material products that can meet the requirements of users through different processing methods. The cost of wet molding products is low, the production process is relatively simple, and the production efficiency of the process is high. In the current production of carbon fiber, dry forming is used in the case of high precision and high-quality requirements, and wet forming is used in appearance parts and mass production.

Published by Nov 02, 2022 Source :, Source :

Further reading

You might also be interested in ...

Headline
Knowledge
The Birth of a Fabric: The Science and Craft of Textiles
Although fabric may seem like an ordinary item in our daily lives, its creation involves complex and highly precise processes. From cotton grown in the fields to synthetic fibers produced in factories, each raw material carries unique properties and purposes. Whether it¡¯s the light, airy touch of a shirt or the high protective performance of medical textiles, behind it lies a production chain that spans agriculture, chemistry, and engineering.
Headline
Knowledge
Exploring Major Types of Plastics and Their Properties
Plastic materials are indispensable raw materials in modern manufacturing. Based on their chemical structures and processing characteristics, plastics are mainly classified into two categories: thermoplastics and thermosets. Understanding the properties of these two types aids in material selection and product design, thereby enhancing manufacturing efficiency and product performance.
Headline
Knowledge
Analysis of Green Plastic Manufacturing
With the rise of environmental awareness and the global push for sustainable development goals, traditional plastics face increasing environmental pressure due to their challenges in decomposition and recycling. In response, the manufacturing industry is actively developing and applying eco-friendly plastic materials to build green manufacturing systems. This article explores the types, characteristics, and industrial applications of eco-friendly plastics to assist industry transformation and upgrading.
Headline
Knowledge
Key Parameters for Manufacturing High-Quality Plastic Products
Plastic materials are widely used across various industries due to their lightweight, ease of molding, and versatile properties. 91ÊÓÆµ¹ÙÍøever, different types of plastics exhibit distinct mechanical, thermal, chemical, and dimensional stability characteristics, which directly affect the final product¡¯s performance and service life. Therefore, understanding the performance indicators of plastics is fundamental to designing and manufacturing high-quality plastic products.
Headline
Knowledge
Dry Cutting vs. Wet Cutting: The Balance of Energy Saving, Cost, and Quality
In CNC machining, the choice of cooling method is not simply a technical preference but a multi-faceted trade-off involving cost control, machining quality, tool life, and production line stability. Both dry cutting and wet cutting have their advantages and limitations. To stand out in the fiercely competitive market, companies must shift from pursuing the ¡°theoretically optimal¡± to the ¡°contextually optimal¡± solution.
Headline
Knowledge
The Unsung Heroes of Cutting Tool Coatings: Performance Differences from TiN to DLC
In CNC machining, cutting tool coatings are a critical yet ¡°invisible¡± factor in boosting production efficiency and reducing costs. Although coating thickness is only a few microns, it significantly enhances tool hardness and wear resistance, optimizes heat dissipation, and improves cutting speed and machining accuracy. From classic Titanium Nitride (TiN) to advanced Diamond-Like Carbon (DLC) coatings, different coating materials not only offer varying hardness and heat resistance but also affect tool lifespan and machining adaptability.
Headline
Knowledge
Comprehensive Overview of Plastic Processing Methods: Mastering Key Technologies and Applications
Plastic products play an indispensable role in modern manufacturing, and various plastic processing techniques are crucial for achieving product diversity and efficient production. The following introduces five common and important plastic processing methods, helping readers gain a thorough understanding of their principles, features, and application scopes.
Headline
Knowledge
Fabric Knowledge Base: A Guide to Fiber Applications, From Beginner to Expert Selection
Textile fiber is the fundamental element that determines fabric performance and product suitability. Whether you are a designer, manufacturer, or consumer, understanding the unique characteristics of different fibers and their suitable applications is crucial for precise material selection and informed purchasing. This article will systematically introduce the applications of major natural and synthetic fibers and explain how blending them can overcome the limitations of single fibers, providing versatile functional solutions and helping you build a comprehensive knowledge base of textile applications.
Headline
Knowledge
What is Liquid Injection Molding?
Liquid Injection Molding (LIM) is a manufacturing process that involves injecting liquid silicone rubber (LSR) into precision molds, followed by heating and curing to form high-precision, complex plastic components. Compared to traditional thermoplastic injection molding, LIM offers superior accuracy and the capability to produce more intricate shapes, making it especially suitable for applications demanding high performance and reliability.
Headline
Knowledge
Precision Mold Development and Manufacturing: The Core Technology of Modern Plastic Production
Precision molds form the foundation for the quality and efficiency of plastic part molding. In today¡¯s highly competitive manufacturing environment, the design and fabrication of molds directly impact a product¡¯s functional performance and market competitiveness. Excellent mold development requires not only precise engineering design but also the integration of advanced machining technologies and rigorous quality control to achieve efficient and stable mass production.
Headline
Knowledge
The Magical Journey of Milk Tea
Pouring smooth, rich milk into robust black tea with a unique aroma, then stirring it all together, gets you a cup of milk tea. But do you really know what defines milk tea, and how it differs from the milk tea we enjoy today?
Headline
Knowledge
The Connection Between Textiles and Biomimicry: A Fabric Revolution Inspired by Nature
Lotus leaves after rain shed water droplets without a trace; delicate spider silk is stronger than steel. These are not coincidences but exquisite designs evolved by nature over millions of years. The textile industry is learning from this great designer¡ªnature itself¡ªthrough biomimicry, transforming natural wisdom into fabrics that perform better and are more eco-friendly.
Agree