91ÊÓÆµ¹ÙÍø

91ÊÓÆµ¹ÙÍø Will AI Robots Disrupt the Manufacturing Industry?
Trend

91ÊÓÆµ¹ÙÍø Will AI Robots Disrupt the Manufacturing Industry?

Artificial intelligence has brought in a new generation of robotics technology: Robotics 2.0. The principal challenge is the transformation from original manual programming methods to true autonomous learning. Faced with this challenge for innovation in AI robotics, how can Taiwan's manufacturing industry best seize the opportunity?
Published: Aug 12, 2021
91ÊÓÆµ¹ÙÍø Will AI Robots Disrupt the Manufacturing Industry?

What Is AI Robots?

AI Robots are the artificial agents acting in the real-world environment. Changes in the field of robotics and AI, are causing manufacturers to change from automation processes traditionally used in production, to processes using autonomous learning. Beyond the robot¡¯s ability to handle routine tasks, robots can now also respond to changes in input given by humans and the environment.

Current State of Manufacturing Automation
According to a recent report issued by the International Federation of Robotics (IFR), global shipments of industrial robotic arms set a record in 2018, reaching 384,000 units. Among the major importing countries, China was the largest market (accounting for 35%), followed by Japan and the United States. Taiwan ranked sixth in the world.

Automobile and electronics manufacturing is still the largest application market for industrial arms, accounting for about 60%, which is higher than other industries such as metals, plastics, and food.

Due to the limitations of traditional robots and computer automation, at present, except for the automotive and electronics industries, almost none of the warehousing, agriculture, and other industries have begun to use robotic arms. This situation will be changed by new technologies such as AI robots and deep learning. Automation and industrial robotic arms have been in the manufacturing industry for decades, but even the most automated automobile manufacturing industry is still a long way from the so-called lights-out factory. For example, most parts of car assembly are still done manually. This is also the most labor-intensive part of the car factory. On average, two-thirds of the employees in an automobile factory are in the assembly workshop.

Why Is Full Automation So Difficult?

Technical limitations that automation has not been able to overcome so far.

Today's automated production lines are generally designed for mass production. They can effectively reduce costs, but lack flexibility. As consumers prefer products with shorter and shorter life cycles, the demand for customized production increases. Humans are often more capable of responding to these new product lines than robots, as they do not need to spend a lot of time to rewrite programs or change manufacturing processes.

  • Dexterity and Complexity
    Despite rapid advances in technology, humans are still much more dexterous than robots. Although assembly processes have been highly automated, they still need to be programed using manpower.
    Material preparation required in manufacturing and warehousing is an area where production efficiency can be improved. In the process of assembling, all the parts needed for assembly can be placed in a tool kit. The robot can then take each part from the toolkit and perform assembly operations. If each part is in its fixed position and angle, automatic programming is relatively easy. On the contrary, where it is necessary to identify and retrieve parts from disordered parts boxes, it is a challenge to existing machine-vision and robotics technology.
  • Visual and Non-Visual Feedback
    Many complex assembly operations require the experience or feeling of the operator. Whether it's installing a car seat or putting parts in a toolkit, these seemingly simple actions require operators or robots to receive and adjust the angle and strength of the actions based on various visual and even tactile signals.
    These fine adjustment requirements make traditional automated programming almost useless, because every time you pick or place an item, the process is not the same. You need to have the ability to learn from multiple attempts, and summarize the required action needed, as a person would. 91ÊÓÆµ¹ÙÍøever, machine learning, especially deep and reinforcement learning, can bring major changes to robotics.

Robotics 2.0: What Can AI Enable Production To Do?

The biggest change that AI has brought to robotic arms is: In the past, robotic arms could only repeatedly execute programs written by engineers. Although the accuracy and speed were high, they could not cope with any environmental or process changes. But now because of AI, machines can learn more complex tasks on their own.

Specifically, AI robots have major breakthroughs in three major areas compared with traditional robotic arms:

  • Vision System
    ?Even the highest-end 3D industrial camera still cannot judge depth and distance accurately like the human eye can. They also cannot identify transparent packaging, reflective surfaces, or deformed objects. Machine vision has made great progress in the past few years, using deep learning, semantic segmentation, and scene understanding to improve the depth and image recognition of low-end cameras. This has allowed manufacturers to obtain sufficiently accurate images without using expensive cameras. This image recognition can successfully identify transparent or reflective object packaging.
  • Scalability
    Deep learning does not need to construct a 3D model of each item in advance like traditional machine vision. Just input the picture and after training, the artificial neural network can automatically recognize the objects in the image. It can even use unsupervised or self-supervised learning to reduce the need for manual labeling of data or features. This allows the machine to learn in a way closer to how humans do, eliminating human intervention, and allowing the robot to face new tasks without the need for engineers to rewrite programs. With the continued operation of the machine, more and more data are collected, and the accuracy of the machine learning model is further improved.
    Since deep learning models are generally stored in the cloud, robots can learn from each other and share knowledge. This not only saves on the learning time of other machines, but also ensures the consistency of quality.
  • Intelligent Placement
    "Please handle with care, or arrange the items neatly", this is a huge technical challenge for the robotic arm.
    91ÊÓÆµ¹ÙÍø to define "handle with care"? Does it stop applying force the moment the object touches the desktop? Or is it moving to a certain distance and letting go to let the object fall naturally? This is a test of the technology.
    ?It is even more difficult to "arrange items neatly." In order to accurately place items at the desired position and angle, we must first pick up items from the correct position. The robotic arm is still not as dexterous as a human hand. Most robotic arms use suction cups or clamps, and there is still a long way to go to achieve the flexibility of human joints and fingers. Secondly, we need to be able to instantly determine the angular position and shape of the object being gripped. We need to know where other objects or obstacles are in order to judge where to place items to save the most space.
    Through AI, the robot arm can judge depth more accurately, and can also learn to improve through training. Items can be placed face up, face down, or in other varying positions. You can also use Object Modeling, or Voxelization, to predict and reconstruct 3D objects so that the machine can more accurately determine the size and shape of the actual object, and place the object in the proper position.

91ÊÓÆµ¹ÙÍø Will AI Robots Disrupt the Manufacturing Industry?

Existing players in the industry generally choose to focus on continuous innovation and improve existing products and services in order to serve existing customers. At this time, some small companies with fewer resources can seize the opportunity to target neglected markets and gain a foothold in these markets. AI robots will bring disruptive innovation to the manufacturing industry.

Disruptive innovation is divided into the following two types: low-level market innovation and new market innovation. What AI robots bring is disruptive innovation to new markets. New market innovation refers to innovation brought about by new companies aiming at new markets which existing companies have not yet served.

With the automotive and electronic manufacturing industries accounting for 60% of industrial robotic arms, many manufacturers focus on continuous innovation to do what they are best at and what customers need most to further improve speed and accuracy. Warehousing, food manufacturing, and material preparation procedures have been neglected. Customers are not lacking high-speed and high-precision robotics, but they are looking for robotic arms that are more flexible and able to learn to perform differing tasks with flexibly. Seeing this unmet demand, AI Robotics Company began to apply artificial intelligence to robots so that robotic arms could be used in new markets such as material preparation, packaging, and warehousing. Lower-level cameras used in machine learning models automate procedures such as material preparation and cargo sorting whuch could only be done manually in the past. Robotic arms can be used in more places, and over a vast range of industries.

Challenges and Opportunities Brought About by AI Robots

The combination of AI and robots brings many possibilities, but these changes will by no means come overnight. Even if robotic arm companies begin to invest in AI, they must also think about how to rebuild their organization and development strategies to minimize the negative impact of transformation and meet the demand presented by each company's management.

On the other hand, developing new markets is by no means a simple matter. Start-up companies still need to work closely with manufacturers to develop solutions that better meet customer needs. The manufacturing process is even more complex and diverse than warehousing. Although start-up companies understand AI and robotics technology, they do not necessarily understand the manufacturing process. This also gives Taiwanese manufacturers the best opportunity to seize the opportunity to grow and transform.

Taiwan's development of artificial intelligence in the manufacturing industry not only brings the advantages of understanding application cases and mastering data, but also achieves the goal of industrial transformation by using new technologies such as AI robotics.

If Taiwanese manufacturers can take the lead in cooperating with these start-up companies, they can not only improve production efficiency and quality through process automation, but can also provide customized solutions for processes that were difficult to perform in the past. By moving away from the strategies of mass manufacturing and price-cutting competition, international startups can become a testing ground for a new generation of AI robots, and develop exclusive solutions for the electronics or semiconductor manufacturing industry, thereby increasing export production.

Published by Aug 12, 2021 Source :

Further reading

You might also be interested in ...

Headline
Trend
EU Rules and Taiwan¡¯s Textile Sustainability Shift
In recent years, the European Union has introduced a series of new regulations on sustainability and the circular economy, with the textile industry being one of the key areas under scrutiny. These regulations not only change how products are designed and manufactured, but also reshape collaboration models across global supply chains. For Taiwan¡¯s export-oriented textile sector, this means accelerating the pace of sustainable transformation in order to remain competitive in the European market¡ªwhile turning challenges into opportunities for brand and technological upgrades.
Headline
Trend
New Landscape in Precision Machining: Five Key Evolution Trends in CNC Toolroom Lathes
As global manufacturing competition intensifies, the precision machining industry is facing unprecedented challenges: parts are becoming smaller and more geometrically complex, machining accuracy requirements are rising, and delivery deadlines are increasingly compressed. As a core piece of equipment in this field, the CNC toolroom lathe is undergoing a profound transformation driven by both technological breakthroughs and evolving market demands.
Headline
Trend
Digital Transformation and Smart Manufacturing Trends in Machining Industry: Applications of Industry 4.0, IoT, and AI
The global manufacturing sector is undergoing an unprecedented wave of digital revolution. This trend brings technological advancement but also intensifies international market competition. The processing industry, a critical part of the manufacturing supply chain, faces multiple challenges including raw material price fluctuations, rising labor costs, and stricter environmental regulations. As consumer demands become more diverse and customized, the processing sector must swiftly adjust production methods. By embracing digital transformation, companies can enhance production efficiency and product quality, securing their competitive edge and market position. Digital transformation is no longer optional but an essential path for sustainable development in manufacturing¡¯s future.
Headline
Trend
Multi-Model Comparison: The Full Evolution from Manual to CNC Toolroom Lathes
High-precision lathes and toolroom lathes specialize in producing small, high-accuracy components, often used in prototype development and sample manufacturing. As CNC toolroom lathes become increasingly widespread, the industry is moving toward digital and automated control to shorten production cycles and improve machining quality and consistency.
Headline
Trend
CNC Market in India Exhibits CAGR Significantly Higher Than Global Average: Market Outlook
India¡¯s manufacturing sector is undergoing a critical transformation phase, with the rapid rise of industrial automation propelling the CNC machine tool market into a global growth hotspot. According to the latest research report by Technavio, the overall machine tool market in India is expected to increase by approximately USD 3.08 billion from 2024 to 2029, with a compound annual growth rate (CAGR) of 11.6%. In contrast, the global machine tool market CAGR is only about 5.07% (2023¨C2029), and the global CNC machine tool market CAGR is around 5.4% (2025¨C2029). India¡¯s market growth rate is nearly twice the global average. Furthermore, supported by its large industrial base and favorable policies, India has strong potential to become a key strategic region in the global CNC machine tool market.
Headline
Trend
Global Competitiveness of Taiwan¡¯s Lathe Industry
As global manufacturing moves toward high-precision and high-efficiency machining, lathe equipment remains an indispensable core tool in aerospace, automotive, energy, and medical sectors. Leveraging a solid manufacturing foundation and flexible customization capabilities, Taiwan has steadily expanded in the international lathe market, becoming a key supplier to both Europe, the United States, and emerging markets. To address diverse machining needs, Taiwanese manufacturers deploy both manual and CNC lathes, covering educational training, basic machining, and large-scale automated production¡ªdemonstrating high adaptability to market demands.
Headline
Trend
Comprehensive Analysis of Vertical Injection Molding Machine Trends: Intelligence, Multifunctionality, and Brand Competition
Vertical injection molding machines, owing to their unique structural design and operational advantages, are widely used in electronics, medical devices, automotive components, and high-precision plastic part manufacturing. They are especially indispensable for insert molding and in-mold decoration (IMD) processes. As global manufacturing advances toward smarter, higher-efficiency operations, the vertical injection molding machine market is showing several clear trends.
Headline
Trend
Textile Black Tech: The Superpowers of Functional Fabrics
Have you ever wondered why some jackets can block wind and rain without making you feel stuffy? Or why some sportswear wicks away sweat quickly, keeping you dry? This isn't magic; it's the superpower of high-performance textiles. They are no longer just clothes but key materials that improve quality of life and ensure personal safety.
Headline
Trend
Integrated Plastic Manufacturing: Industry Applications and Development Trends
Modern manufacturing faces challenges of small-batch diversity, high customization, and shortened time-to-market. Traditional segmented outsourcing models struggle to respond effectively. Mold design, injection molding, and post-processing are handled by different vendors, often causing unstable delivery schedules, significant quality variations, and difficulty in making changes. To address these trends, the industry is accelerating toward integrated ¡°one-stop¡± manufacturing services. Chiakuan Industrial Co., Ltd. has long focused on providing comprehensive plastic manufacturing solutions, covering mold design, injection molding, surface treatment, and assembly and packaging. This fully meets companies¡¯ demands for ¡°one-stop outsourcing,¡± significantly improving development efficiency and delivery quality, while enhancing rapid market response and competitiveness.
Headline
Trend
Edible Film Packaging: The Delicious and Eco-Friendly Solution
Imagine a candy wrapper you don't have to unwrap and that doesn't become trash. Would you eat it or throw it away? With modern technology advancing daily, the food packaging industry has developed edible film packaging to keep up with sustainability trends, allowing you to eat the protective layer directly while enjoying your food.
Headline
Trend
From Trade Wars to Bubble Tea: When Global Tariffs Impact a Local Industry
In today's globalized world, changes in a country's trade policies can have far-reaching consequences. A single tariff agreement or trade barrier not only affects large-scale international commodity trading but can also subtly alter our daily consumption habits. When this wave of trade protectionism sweeps across the globe, even Taiwan's most iconic cultural export¡ªbubble tea¡ªcannot remain untouched. In the following, we'll delve into how tariffs impact the bubble tea industry's supply chain and the challenges and opportunities they present.
Headline
Trend
The Evolution and Challenges of Five-Axis Machining: Future Directions for High-Complexity Manufacturing
Five-axis machining technology marks a major leap for the manufacturing industry, moving from traditional three-axis methods to advanced machining. It enables the production of complex, multi-angled parts in a single setup, significantly boosting both efficiency and precision. 91ÊÓÆµ¹ÙÍøever, to fully unlock the potential of five-axis machining, companies need more than just costly equipment¡ªthey also require skilled operators, rigorous process management, and the support of smart manufacturing technologies such as AI, automation, and digital simulation. Looking ahead, five-axis machining will continue evolving toward greater precision, environmental sustainability, and hybrid manufacturing, integrating sustainable principles to help businesses strengthen their competitiveness. Overall, five-axis machining is not merely an equipment upgrade, but a comprehensive transformation that blends technology, talent, and management¡ªmastering these elements will be the key to business success.
Agree