91ÊÓÆµ¹ÙÍø

What is Smart Manufacturing?
Trend

What is Smart Manufacturing?

Wisdom Manufacturing (WM) is the use of advanced manufacturing technology and new-generation information technologies such as the Internet of Things, big data, cloud computing, artificial intelligence (AI), etc., to highly customize every link of the production process and use advanced manufacturing models to adapt to rapidly changing external market demands.
Published: Feb 08, 2022
What is Smart Manufacturing?

In 2021, the size of the global smart manufacturing market reached US$305 billion, and is expected to reach US$450 billion by 2025. With a compound annual growth rate of 10.5%, smart manufacturing will usher in the growing trend of the manufacturing market.

Previous manufacturing models usually pursued automation to mass-produce products. But now, more and more manufacturers are turning to smart manufacturing to achieve rapid customized production of products to meet customer needs. The benefits of smart manufacturing have been realized through conservative strategies such as strengthening manufacturing resilience, to gradually improving production capacity and efficiency, energy conservation, emission reduction, and recycling. All these have become important keys to boosting the growth of the smart manufacturing market.

Smart manufacturing gap analysis: Separation of data and business scenarios

With the blessing of digitalization, the manufacturing industry is being continuously strengthened. The industry is seeing the intelligent transformation of production methods, organization, supply chains, and manufacturing modes driven by new forms of marketing, services, and design.

The overall business strength of the company has improved, but there is still a gap in traditional fields such as device automation and intelligence. On the one hand, the lack of corresponding technical and production processes, coupled with the lack of motivation for automation upgrades due to cost issues, has resulted in low penetration and utilization rates of smart factories and smart workshops. On the other hand, the level of data flow is not enough to support the automatic execution between multiple business systems, which reduces the fluency of the business chain and the automatic collaboration between systems is not high.

The core of smart manufacturing: Generating value through data flow

Smart factories are the key to future development in industry, and the speed of device interconnection will be further accelerated. The standardization of production is guaranteed through data monitoring so that in the face of emergencies, production can respond immediately and data can act as a conductor to reduce risks.

In the manufacturing sector, data is an important resource. The manufacturing industry has an extensive accumulation of data which the Industrial Internet of Things (IIoT) can use to create major advantages. Whether it is the IIoT or smart manufacturing, all industrial elements, the entire industrial chain, and the entire value chain, including people, materials, and machinery are deeply interconnected.

Smart factory: Data culture should play an important role

An enterprise's digital development strategy, overall framework, cultural accumulation, management model, and key processes are mutually enhancing. To gain value from the information center, new technologies need to be developed and integrated.

Important elements of smart manufacturing:

Manufacturers that can master smart manufacturing will become the leaders of Industry 4.0. The following elements will help to build a good foundation and speed up the implementation of smart manufacturing.

  1. Element 1: Import automation equipment
    Although automation equipment is one of the foundations of smart manufacturing and can replace some labor-based jobs, it is important to match and optimize each link of design, production, and service to have high-efficiency and low-cost processes. If automation equipment is randomly introduced it may just be a waste of investment and have little benefit.
  2. Element 2: Device connection and data integration
    After automation equipment has been obtained, the next step is to connect the equipment. The data of each piece of equipment can be integrated with the technology of the Internet of Things, and the manufacturing process can be optimized.
  3. Element 3: Remote Monitoring
    Smart manufacturing has replaced some physical work, allowing people to carry out more decision-making and technical work. Through remote monitoring, operators can monitor the status of equipment at any time, adjust manufacturing schedules in real-time, and detect equipment malfunctions to increase productivity and extend equipment life.
  4. Element 4: Combining AI technology
    The ultimate goal of smart manufacturing it to combine artificial intelligence with manufacturing, and is an important trend at present. AI allows equipment to be upgraded, and through self-learning, information is collected which can be used to continuously optimize production processes.
Challenges currently faced by manufacturers:

With the digital transformation brought by Industry 4.0, not only the manufacturing industry, but the government as well, hopes to increase intelligent industry. Many manufacturing industries only saw Industry 4.0 as a means to an automated, unmanned factory, however this led to a lot of money being invested, without gaining the full potential of smart manufacturing.

Several difficulties are generally encountered during transformation. For example, the integration of automated equipment in production lines requires planning and design to create a complete system that will generate maximum benefits. Although today's technology has gradually matured, enterprises often cannot afford the cost of high-tech applications that would bring the economic benefits that result from implementing smart manufacturing. During the transformation, there will be a period of time required for manpower and system integration and adjustment. In addition to transferring data, recruitment of talents or internal training is also required. This should be taken into consideration to speed up the adaptation time.

Many enterprises will be eager to carry out industrial transformation. Before the transformation, they should first evaluate the situation within the enterprise, plan for possible problems, and have a complete integration plan to make for a smooth transformation.

Application of smart manufacturing:
  1. Expand 5G applications:
    The three major features of 5G (URLLC, mMTC, eMBB) are expected to provide secure, fast, and highly reliable communications, driving the transformation and upgrading of the manufacturing industry to smart factories. It is also necessary to develop the surrounding supply chain and ecosystem together with telecom operators, system integrators, and Netcom operators. In the future 5G+AI innovation will be able to handle one million edge devices within one square kilometer with optimal performance.
  2. Import AI interpretability:
    Humans and machines must cooperate, and interpretability must be used to guide people to make corresponding decisions.
  3. Federated Learning Model:
    Takes into consideration that when training AI models, traditional centralized learning cannot be carried out. Privacy, regulations, geographic regions, and industry competition data all have to be considered. Model sharing is used instead of data sharing to overcome application differences of knowledge sharing. Smart manufacturing can be used in areas where small and medium-sized enterprises are clustered and have common AI requirements, but require product differentiation.
  4. Information security protection:
    The most common security threats in Taiwanese manufacturing are ransomware, malware attacks, and phishing attacks. In the future, enterprise defense will move towards a new architecture that integrates IT and OT, so that the OT side will also be included in information security protection, and a unified solution will be established to alleviate the challenges of digital transformation.

The future of smart manufacturing focuses on:

The core of smart manufacturing is real-time integration of data and equipment, so latency, security, and computing power will be optimized. Future development will focus on edge computing and 5G, such as AR/VR, machine vision. Beyond the important basic applications, such as digital twins and predictive maintenance, technology will support the overall application. Smart manufacturing can also improve energy optimization, reducing carbon emissions. Green IoT technology will be a key element of future smart manufacturing equipment and factory design.

Taiwan is expected to gain an edge in the micro-factory niche:

Taiwan's manufacturing industry has the advantages of high customization and supply chain clustering, and the smart manufacturing value chain is relatively complete. Many manufacturers have invested in the integration and application of smart solutions, providing a variety of one-stop service options such as equipment health inspection and machine vision, effectively reducing the threshold for introduction. Continuing this development trend, micro-factories will be a key entry point for Taiwanese manufacturers to explore business opportunities in the future.

In the past, there were multiple global divisions of labor in the smart manufacturing value chain. 91ÊÓÆµ¹ÙÍøever, with the return of the manufacturing industry to normal, after the turmoil in recent years, short-chain and localized production has risen, so new types of micro-factories have been developed. Micro factories rely on a high degree of automation and accurate analysis to improve product quality with minimal resources. The benefits come from a flexible supply chain, streamlined manpower, and low initial costs. Manufacturers can take advantage of niche markets by making transformations that upgrade and increase product output.

Published by Feb 08, 2022 Source :, Source :, Source :

Further reading

You might also be interested in ...

Headline
Trend
The Path to Upgrading Metal Fabrication: Digital Transformation, Low-Carbon Challenges, and Global Opportunities
Facing resource- and energy-intensive production processes, the metal fabrication industry must harness smart manufacturing and automation¡ªdeploying CNC machining, robotic arms, and AI monitoring¡ªto cut costs and errors while enhancing precision and delivery reliability. Integration of ERP, MES, and APS platforms increases process transparency and enables real-time scheduling adjustments, forming a seamless data and management loop. It¡¯s recommended to support this with global market size data and figures on rising automation investments to boost credibility.
Headline
Trend
Urgent Need for Low-Carbon Transformation in the Metal Fabrication Industry
The urgent need for low-carbon transformation is especially pronounced in the metal fabrication industry, which has long been resource- and energy-intensive with high carbon emissions, making it a key sector for addressing climate change and global carbon neutrality goals.
Headline
Trend
The Multifaceted Innovative Impact of Microfactories on the Manufacturing Industry
Compared to traditional large factories, microfactories have lower investment costs and modular design advantages. Equipment and production units can be quickly replicated and replaced, reducing downtime and maintenance costs, enabling companies to respond more flexibly to market changes and product adjustments. Moreover, microfactories can shorten time-to-market by quickly responding to market demands and technological innovations. Through modular design and digitized production processes, new product development and market introduction speed up significantly, offering a clear advantage in competitive markets.
Headline
Trend
Trends in Advanced Material Processing Technologies and High-Precision Machine Tool Development
In aerospace, automotive, and high-performance manufacturing industries, advanced alloys (such as titanium alloys and nickel-based superalloys) and composites (such as thermoplastic carbon fiber composites) are becoming mainstream due to their lightweight, high strength, and high-temperature resistance. By 2025, the global aerospace composite market is expected to expand rapidly with an annual compound growth rate of about 13.9%, driven by the demand for environmental protection and net-zero emissions, which will further innovate and apply thermoplastic composite technologies. These new materials present challenges such as high hardness, tool wear, heat management, and processing deformation control, requiring processing equipment to have higher rigidity, precision, and thermal stability. Additionally, the production process's demand for rapid prototyping, modular assembly, and recycling drives the simultaneous upgrading of materials and equipment.
Headline
Trend
Intelligent Oil Mist Purification Technology for Machine Tools: From Air Cleaning to Smart Factory Accelerator
As CNC machining and precision metal processing continue to grow, machine tools release large amounts of oil mist, atomized coolant droplets, smoke, and fine oil particles during operation. Prolonged exposure to such environments not only endangers operator health but also affects machine accuracy and maintenance costs. Therefore, highly efficient oil mist filtration equipment has become an essential asset in modern machining facilities.
Headline
Trend
Oil Mist Filtration: Creating Safer Workplaces
In industrial machining processes, the generation of oil smoke and fine oil mist is unavoidable. Without effective collection and filtration, these airborne contaminants pose serious health risks to workers, increasing the likelihood of respiratory diseases and occupational illnesses. At the same time, accumulated oil smoke not only pollutes the work environment and degrades air quality but also accelerates wear and malfunction of machinery, resulting in higher maintenance costs. Furthermore, the presence of flammable oil mist increases the risk of fire hazards, endangering factory safety. To ensure stable, safe production that complies with regulations, oil smoke collection systems have become an essential protective measure in modern smart manufacturing¡ªsafeguarding employee health while enhancing equipment efficiency and environmental quality.
Headline
Trend
EU Rules and Taiwan¡¯s Textile Sustainability Shift
In recent years, the European Union has introduced a series of new regulations on sustainability and the circular economy, with the textile industry being one of the key areas under scrutiny. These regulations not only change how products are designed and manufactured, but also reshape collaboration models across global supply chains. For Taiwan¡¯s export-oriented textile sector, this means accelerating the pace of sustainable transformation in order to remain competitive in the European market¡ªwhile turning challenges into opportunities for brand and technological upgrades.
Headline
Trend
New Landscape in Precision Machining: Five Key Evolution Trends in CNC Toolroom Lathes
As global manufacturing competition intensifies, the precision machining industry is facing unprecedented challenges: parts are becoming smaller and more geometrically complex, machining accuracy requirements are rising, and delivery deadlines are increasingly compressed. As a core piece of equipment in this field, the CNC toolroom lathe is undergoing a profound transformation driven by both technological breakthroughs and evolving market demands.
Headline
Trend
Digital Transformation and Smart Manufacturing Trends in Machining Industry: Applications of Industry 4.0, IoT, and AI
The global manufacturing sector is undergoing an unprecedented wave of digital revolution. This trend brings technological advancement but also intensifies international market competition. The processing industry, a critical part of the manufacturing supply chain, faces multiple challenges including raw material price fluctuations, rising labor costs, and stricter environmental regulations. As consumer demands become more diverse and customized, the processing sector must swiftly adjust production methods. By embracing digital transformation, companies can enhance production efficiency and product quality, securing their competitive edge and market position. Digital transformation is no longer optional but an essential path for sustainable development in manufacturing¡¯s future.
Headline
Trend
Multi-Model Comparison: The Full Evolution from Manual to CNC Toolroom Lathes
High-precision lathes and toolroom lathes specialize in producing small, high-accuracy components, often used in prototype development and sample manufacturing. As CNC toolroom lathes become increasingly widespread, the industry is moving toward digital and automated control to shorten production cycles and improve machining quality and consistency.
Headline
Trend
CNC Market in India Exhibits CAGR Significantly Higher Than Global Average: Market Outlook
India¡¯s manufacturing sector is undergoing a critical transformation phase, with the rapid rise of industrial automation propelling the CNC machine tool market into a global growth hotspot. According to the latest research report by Technavio, the overall machine tool market in India is expected to increase by approximately USD 3.08 billion from 2024 to 2029, with a compound annual growth rate (CAGR) of 11.6%. In contrast, the global machine tool market CAGR is only about 5.07% (2023¨C2029), and the global CNC machine tool market CAGR is around 5.4% (2025¨C2029). India¡¯s market growth rate is nearly twice the global average. Furthermore, supported by its large industrial base and favorable policies, India has strong potential to become a key strategic region in the global CNC machine tool market.
Headline
Trend
Global Competitiveness of Taiwan¡¯s Lathe Industry
As global manufacturing moves toward high-precision and high-efficiency machining, lathe equipment remains an indispensable core tool in aerospace, automotive, energy, and medical sectors. Leveraging a solid manufacturing foundation and flexible customization capabilities, Taiwan has steadily expanded in the international lathe market, becoming a key supplier to both Europe, the United States, and emerging markets. To address diverse machining needs, Taiwanese manufacturers deploy both manual and CNC lathes, covering educational training, basic machining, and large-scale automated production¡ªdemonstrating high adaptability to market demands.
Agree