91ÊÓÆµ¹ÙÍø

The Role of Fog Computing in Enhancing the Industrial Internet of Things
Trend

The Role of Fog Computing in Enhancing the Industrial Internet of Things

After "Cloud Computing", a new term "Fog Computing" has been added in recent years. It mainly comes from the phrase "fog is a cloud closer to the ground".
Published: Jun 09, 2023
The Role of Fog Computing in Enhancing the Industrial Internet of Things

What Is Fog Computing?

For the development of IoT technology and applications, more and more intelligent networking devices are connected to the network. Under the basic model of cloud computing, most of them have only very weak computing power. Therefore, related computing resources, such as storage or computing power, must be accessed from the cloud through the network. With the rapid growth of demand, the burden on the cloud is getting heavier and heavier. After all, it is a centralized resource. Secondly, the cloud is relatively far from the end, and these smart devices have a long delay when accessing resources on the cloud.

Fog computing is designed for data-intensive, high-performance computing, and high-risk environments. Fog is an emerging distributed architecture that bridges the cloud and the devices connected to it, without the need to establish a permanent cloud connection between the site and the factory. By selectively transferring computing, storage, communication, and control, fog computing can make decisions close to IoT sensors and actuators (this is data generation and use). It is a useful supplement to cloud computing, not a complete replacement so that IIoT can be used efficiently, economically, safely, and constructively in a manufacturing environment.

Fog is sometimes called edge computing, but there are key differences between them. Fog is a superset of edge functions. The fog architecture combines resources and data sources with a hierarchical structure that resides on north-south edge devices (cloud to sensors) and east-west edge devices (function-to-function or point-to-point) for maximum efficiency. Edge computing is often limited to a small number of north and south layers, usually related to simple protocol gateway functions.

Therefore, under these considerations, there is fog-end computing, which means that computing resources are decentralized to some extent and deployed closer to users.
Therefore, fog computing is not a substitute for cloud computing, but as an extension of cloud computing.

Basically, the combination of the two is to hierarchize the allocation of computing resources. The top layer is the cloud, the middle layer is the fog, and the bottom layer is the client-side connected device. Therefore, under this model, a certain percentage of computing resources that were originally concentrated in the cloud will be reduced to the fog end. When the device wants to access resources, it will be accessed as close as possible to the fog end.

In this way, because the fog end is closer to the ground, the access speed is faster. Secondly, even if frequent and large amounts of communication are required, a large amount of network traffic will only be scattered between the ground and the fog, and will not communicate. Throwing into the cloud reduces the burden on the cloud.

91ÊÓÆµ¹ÙÍø to Help the Industrial Internet of Things?

Factories can make full use of the data flow of the fog node layer to make the connection between factories better. Fog nodes located at a lower level in the overall structure, such as a single computer, can be directly connected to local sensors and actuators, so as to be able to analyze data in time and explain abnormal operating conditions. If it has been authorized, it can also respond and compensate for problems or solve problems autonomously. In addition, fog nodes can also send appropriate service requests for higher-level fog hierarchies to providers with better technical resources, machine learning capabilities, or maintenance services.

If the operating conditions require real-time decision-making, such as shutting down the equipment before it is damaged or adjusting key process parameters, the fog node can provide millisecond delay analysis and operation. Manufacturers do not have to use cloud data center routing to implement this real-time decision. This helps avoid potential delay issues, queue delays, or network/server downtime, and these delays can cause industrial accidents, reduce production efficiency, or product quality.

In the factory, the fog nodes located at a higher level can obtain a broader perspective on industrial processes. They can add more functions, such as the visualization of production line operations, monitoring the status of malfunctioning machines, adjusting production parameters, modifying production plans, ordering supplies, and sending alerts to the right people.

Fog computing can help IIoT and smart factories bring various benefits, including productivity, product quality, and safety. IIoT can provide a technical route for clean and green manufacturing. As a result, the manufacturing industry will achieve unprecedented customer-level collaboration and achieve mass customization and large-scale personalized customization. The potential opportunities to take full advantage of all aspects of the Smart Factory are endless.

Published by Jun 09, 2023 Source : Source :medium Source :ithome

Further reading

You might also be interested in ...

Headline
Trend
The Path to Upgrading Metal Fabrication: Digital Transformation, Low-Carbon Challenges, and Global Opportunities
Facing resource- and energy-intensive production processes, the metal fabrication industry must harness smart manufacturing and automation¡ªdeploying CNC machining, robotic arms, and AI monitoring¡ªto cut costs and errors while enhancing precision and delivery reliability. Integration of ERP, MES, and APS platforms increases process transparency and enables real-time scheduling adjustments, forming a seamless data and management loop. It¡¯s recommended to support this with global market size data and figures on rising automation investments to boost credibility.
Headline
Trend
Urgent Need for Low-Carbon Transformation in the Metal Fabrication Industry
The urgent need for low-carbon transformation is especially pronounced in the metal fabrication industry, which has long been resource- and energy-intensive with high carbon emissions, making it a key sector for addressing climate change and global carbon neutrality goals.
Headline
Trend
The Multifaceted Innovative Impact of Microfactories on the Manufacturing Industry
Compared to traditional large factories, microfactories have lower investment costs and modular design advantages. Equipment and production units can be quickly replicated and replaced, reducing downtime and maintenance costs, enabling companies to respond more flexibly to market changes and product adjustments. Moreover, microfactories can shorten time-to-market by quickly responding to market demands and technological innovations. Through modular design and digitized production processes, new product development and market introduction speed up significantly, offering a clear advantage in competitive markets.
Headline
Trend
Trends in Advanced Material Processing Technologies and High-Precision Machine Tool Development
In aerospace, automotive, and high-performance manufacturing industries, advanced alloys (such as titanium alloys and nickel-based superalloys) and composites (such as thermoplastic carbon fiber composites) are becoming mainstream due to their lightweight, high strength, and high-temperature resistance. By 2025, the global aerospace composite market is expected to expand rapidly with an annual compound growth rate of about 13.9%, driven by the demand for environmental protection and net-zero emissions, which will further innovate and apply thermoplastic composite technologies. These new materials present challenges such as high hardness, tool wear, heat management, and processing deformation control, requiring processing equipment to have higher rigidity, precision, and thermal stability. Additionally, the production process's demand for rapid prototyping, modular assembly, and recycling drives the simultaneous upgrading of materials and equipment.
Headline
Trend
Intelligent Oil Mist Purification Technology for Machine Tools: From Air Cleaning to Smart Factory Accelerator
As CNC machining and precision metal processing continue to grow, machine tools release large amounts of oil mist, atomized coolant droplets, smoke, and fine oil particles during operation. Prolonged exposure to such environments not only endangers operator health but also affects machine accuracy and maintenance costs. Therefore, highly efficient oil mist filtration equipment has become an essential asset in modern machining facilities.
Headline
Trend
Oil Mist Filtration: Creating Safer Workplaces
In industrial machining processes, the generation of oil smoke and fine oil mist is unavoidable. Without effective collection and filtration, these airborne contaminants pose serious health risks to workers, increasing the likelihood of respiratory diseases and occupational illnesses. At the same time, accumulated oil smoke not only pollutes the work environment and degrades air quality but also accelerates wear and malfunction of machinery, resulting in higher maintenance costs. Furthermore, the presence of flammable oil mist increases the risk of fire hazards, endangering factory safety. To ensure stable, safe production that complies with regulations, oil smoke collection systems have become an essential protective measure in modern smart manufacturing¡ªsafeguarding employee health while enhancing equipment efficiency and environmental quality.
Headline
Trend
EU Rules and Taiwan¡¯s Textile Sustainability Shift
In recent years, the European Union has introduced a series of new regulations on sustainability and the circular economy, with the textile industry being one of the key areas under scrutiny. These regulations not only change how products are designed and manufactured, but also reshape collaboration models across global supply chains. For Taiwan¡¯s export-oriented textile sector, this means accelerating the pace of sustainable transformation in order to remain competitive in the European market¡ªwhile turning challenges into opportunities for brand and technological upgrades.
Headline
Trend
New Landscape in Precision Machining: Five Key Evolution Trends in CNC Toolroom Lathes
As global manufacturing competition intensifies, the precision machining industry is facing unprecedented challenges: parts are becoming smaller and more geometrically complex, machining accuracy requirements are rising, and delivery deadlines are increasingly compressed. As a core piece of equipment in this field, the CNC toolroom lathe is undergoing a profound transformation driven by both technological breakthroughs and evolving market demands.
Headline
Trend
Digital Transformation and Smart Manufacturing Trends in Machining Industry: Applications of Industry 4.0, IoT, and AI
The global manufacturing sector is undergoing an unprecedented wave of digital revolution. This trend brings technological advancement but also intensifies international market competition. The processing industry, a critical part of the manufacturing supply chain, faces multiple challenges including raw material price fluctuations, rising labor costs, and stricter environmental regulations. As consumer demands become more diverse and customized, the processing sector must swiftly adjust production methods. By embracing digital transformation, companies can enhance production efficiency and product quality, securing their competitive edge and market position. Digital transformation is no longer optional but an essential path for sustainable development in manufacturing¡¯s future.
Headline
Trend
Multi-Model Comparison: The Full Evolution from Manual to CNC Toolroom Lathes
High-precision lathes and toolroom lathes specialize in producing small, high-accuracy components, often used in prototype development and sample manufacturing. As CNC toolroom lathes become increasingly widespread, the industry is moving toward digital and automated control to shorten production cycles and improve machining quality and consistency.
Headline
Trend
CNC Market in India Exhibits CAGR Significantly Higher Than Global Average: Market Outlook
India¡¯s manufacturing sector is undergoing a critical transformation phase, with the rapid rise of industrial automation propelling the CNC machine tool market into a global growth hotspot. According to the latest research report by Technavio, the overall machine tool market in India is expected to increase by approximately USD 3.08 billion from 2024 to 2029, with a compound annual growth rate (CAGR) of 11.6%. In contrast, the global machine tool market CAGR is only about 5.07% (2023¨C2029), and the global CNC machine tool market CAGR is around 5.4% (2025¨C2029). India¡¯s market growth rate is nearly twice the global average. Furthermore, supported by its large industrial base and favorable policies, India has strong potential to become a key strategic region in the global CNC machine tool market.
Headline
Trend
Global Competitiveness of Taiwan¡¯s Lathe Industry
As global manufacturing moves toward high-precision and high-efficiency machining, lathe equipment remains an indispensable core tool in aerospace, automotive, energy, and medical sectors. Leveraging a solid manufacturing foundation and flexible customization capabilities, Taiwan has steadily expanded in the international lathe market, becoming a key supplier to both Europe, the United States, and emerging markets. To address diverse machining needs, Taiwanese manufacturers deploy both manual and CNC lathes, covering educational training, basic machining, and large-scale automated production¡ªdemonstrating high adaptability to market demands.
Agree